tps.py 11.1 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WenmuZhou 已提交
14 15 16 17
"""
This code is refer from:
https://github.com/clovaai/deep-text-recognition-benchmark/blob/master/modules/transformation.py
"""
W
WenmuZhou 已提交
18 19 20 21 22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
23
import math
W
WenmuZhou 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        bn_name = "bn_" + name
        self.bn = nn.BatchNorm(
            out_channels,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class LocalizationNetwork(nn.Layer):
    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(LocalizationNetwork, self).__init__()
        self.F = num_fiducial
        F = num_fiducial
        if model_name == "large":
            num_filters_list = [64, 128, 256, 512]
            fc_dim = 256
        else:
            num_filters_list = [16, 32, 64, 128]
            fc_dim = 64

        self.block_list = []
        for fno in range(0, len(num_filters_list)):
            num_filters = num_filters_list[fno]
            name = "loc_conv%d" % fno
            conv = self.add_sublayer(
                name,
                ConvBNLayer(
                    in_channels=in_channels,
                    out_channels=num_filters,
                    kernel_size=3,
                    act='relu',
                    name=name))
            self.block_list.append(conv)
            if fno == len(num_filters_list) - 1:
                pool = nn.AdaptiveAvgPool2D(1)
            else:
                pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
            in_channels = num_filters
            self.block_list.append(pool)
        name = "loc_fc1"
W
WenmuZhou 已提交
96
        stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
W
WenmuZhou 已提交
97 98 99 100
        self.fc1 = nn.Linear(
            in_channels,
            fc_dim,
            weight_attr=ParamAttr(
W
WenmuZhou 已提交
101 102 103
                learning_rate=loc_lr,
                name=name + "_w",
                initializer=nn.initializer.Uniform(-stdv, stdv)),
W
WenmuZhou 已提交
104 105 106 107 108 109 110 111 112
            bias_attr=ParamAttr(name=name + '.b_0'),
            name=name)

        # Init fc2 in LocalizationNetwork
        initial_bias = self.get_initial_fiducials()
        initial_bias = initial_bias.reshape(-1)
        name = "loc_fc2"
        param_attr = ParamAttr(
            learning_rate=loc_lr,
W
WenmuZhou 已提交
113
            initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])),
W
WenmuZhou 已提交
114 115 116
            name=name + "_w")
        bias_attr = ParamAttr(
            learning_rate=loc_lr,
W
WenmuZhou 已提交
117
            initializer=nn.initializer.Assign(initial_bias),
W
WenmuZhou 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
            name=name + "_b")
        self.fc2 = nn.Linear(
            fc_dim,
            F * 2,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)
        self.out_channels = F * 2

    def forward(self, x):
        """
           Estimating parameters of geometric transformation
           Args:
               image: input
           Return:
               batch_C_prime: the matrix of the geometric transformation
        """
        B = x.shape[0]
        i = 0
        for block in self.block_list:
            x = block(x)
W
WenmuZhou 已提交
139
        x = x.squeeze(axis=2).squeeze(axis=2)
W
WenmuZhou 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        x = self.fc1(x)

        x = F.relu(x)
        x = self.fc2(x)
        x = x.reshape(shape=[-1, self.F, 2])
        return x

    def get_initial_fiducials(self):
        """ see RARE paper Fig. 6 (a) """
        F = self.F
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
        ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        return initial_bias


class GridGenerator(nn.Layer):
    def __init__(self, in_channels, num_fiducial):
        super(GridGenerator, self).__init__()
        self.eps = 1e-6
        self.F = num_fiducial

        name = "ex_fc"
        initializer = nn.initializer.Constant(value=0.0)
        param_attr = ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_w")
        bias_attr = ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_b")
        self.fc = nn.Linear(
            in_channels,
            6,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)

    def forward(self, batch_C_prime, I_r_size):
        """
        Generate the grid for the grid_sampler.
        Args:
            batch_C_prime: the matrix of the geometric transformation
            I_r_size: the shape of the input image
        Return:
            batch_P_prime: the grid for the grid_sampler
        """
W
WenmuZhou 已提交
187 188 189 190 191 192
        C = self.build_C_paddle()
        P = self.build_P_paddle(I_r_size)

        inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32')
        P_hat_tensor = self.build_P_hat_paddle(
            C, paddle.to_tensor(P)).astype('float32')
W
WenmuZhou 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206

        inv_delta_C_tensor.stop_gradient = True
        P_hat_tensor.stop_gradient = True

        batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)

        batch_C_ex_part_tensor.stop_gradient = True

        batch_C_prime_with_zeros = paddle.concat(
            [batch_C_prime, batch_C_ex_part_tensor], axis=1)
        batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
        batch_P_prime = paddle.matmul(P_hat_tensor, batch_T)
        return batch_P_prime

W
WenmuZhou 已提交
207
    def build_C_paddle(self):
W
WenmuZhou 已提交
208 209
        """ Return coordinates of fiducial points in I_r; C """
        F = self.F
W
WenmuZhou 已提交
210 211 212
        ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
        ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
        ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
W
WenmuZhou 已提交
213 214 215
        ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
W
WenmuZhou 已提交
216 217
        return C  # F x 2

W
WenmuZhou 已提交
218 219
    def build_P_paddle(self, I_r_size):
        I_r_height, I_r_width = I_r_size
W
WenmuZhou 已提交
220 221 222 223 224 225 226 227
        I_r_grid_x = (paddle.arange(
            -I_r_width, I_r_width, 2, dtype='float64') + 1.0
                      ) / paddle.to_tensor(np.array([I_r_width]))

        I_r_grid_y = (paddle.arange(
            -I_r_height, I_r_height, 2, dtype='float64') + 1.0
                      ) / paddle.to_tensor(np.array([I_r_height]))

W
WenmuZhou 已提交
228
        # P: self.I_r_width x self.I_r_height x 2
W
WenmuZhou 已提交
229 230
        P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
        P = paddle.transpose(P, perm=[1, 0, 2])
W
WenmuZhou 已提交
231 232 233
        # n (= self.I_r_width x self.I_r_height) x 2
        return P.reshape([-1, 2])

W
WenmuZhou 已提交
234
    def build_inv_delta_C_paddle(self, C):
W
WenmuZhou 已提交
235 236
        """ Return inv_delta_C which is needed to calculate T """
        F = self.F
L
LDOUBLEV 已提交
237
        hat_eye = paddle.eye(F, dtype='float64')  # F x F
T
tink2123 已提交
238 239
        hat_C = paddle.norm(
            C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
W
WenmuZhou 已提交
240 241
        hat_C = (hat_C**2) * paddle.log(hat_C)
        delta_C = paddle.concat(  # F+3 x F+3
W
WenmuZhou 已提交
242
            [
W
WenmuZhou 已提交
243
                paddle.concat(
W
WenmuZhou 已提交
244 245
                    [paddle.ones(
                        (F, 1), dtype='float64'), C, hat_C], axis=1),  # F x F+3
W
WenmuZhou 已提交
246
                paddle.concat(
W
WenmuZhou 已提交
247 248 249 250 251
                    [
                        paddle.zeros(
                            (2, 3), dtype='float64'), paddle.transpose(
                                C, perm=[1, 0])
                    ],
W
WenmuZhou 已提交
252 253
                    axis=1),  # 2 x F+3
                paddle.concat(
W
WenmuZhou 已提交
254 255 256 257 258
                    [
                        paddle.zeros(
                            (1, 3), dtype='float64'), paddle.ones(
                                (1, F), dtype='float64')
                    ],
W
WenmuZhou 已提交
259
                    axis=1)  # 1 x F+3
W
WenmuZhou 已提交
260 261
            ],
            axis=0)
W
WenmuZhou 已提交
262
        inv_delta_C = paddle.inverse(delta_C)
W
WenmuZhou 已提交
263 264
        return inv_delta_C  # F+3 x F+3

W
WenmuZhou 已提交
265
    def build_P_hat_paddle(self, C, P):
W
WenmuZhou 已提交
266 267 268 269
        F = self.F
        eps = self.eps
        n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
        # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
W
WenmuZhou 已提交
270 271
        P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1))
        C_tile = paddle.unsqueeze(C, axis=0)  # 1 x F x 2
W
WenmuZhou 已提交
272 273
        P_diff = P_tile - C_tile  # n x F x 2
        # rbf_norm: n x F
W
WenmuZhou 已提交
274 275
        rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False)

W
WenmuZhou 已提交
276
        # rbf: n x F
W
WenmuZhou 已提交
277 278
        rbf = paddle.multiply(
            paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
W
WenmuZhou 已提交
279 280 281
        P_hat = paddle.concat(
            [paddle.ones(
                (n, 1), dtype='float64'), P, rbf], axis=1)
W
WenmuZhou 已提交
282 283 284
        return P_hat  # n x F+3

    def get_expand_tensor(self, batch_C_prime):
W
WenmuZhou 已提交
285 286
        B, H, C = batch_C_prime.shape
        batch_C_prime = batch_C_prime.reshape([B, H * C])
W
WenmuZhou 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        batch_C_ex_part_tensor = self.fc(batch_C_prime)
        batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
        return batch_C_ex_part_tensor


class TPS(nn.Layer):
    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(TPS, self).__init__()
        self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
                                           model_name)
        self.grid_generator = GridGenerator(self.loc_net.out_channels,
                                            num_fiducial)
        self.out_channels = in_channels

    def forward(self, image):
        image.stop_gradient = False
        batch_C_prime = self.loc_net(image)
W
WenmuZhou 已提交
304
        batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
W
WenmuZhou 已提交
305 306 307 308
        batch_P_prime = batch_P_prime.reshape(
            [-1, image.shape[2], image.shape[3], 2])
        batch_I_r = F.grid_sample(x=image, grid=batch_P_prime)
        return batch_I_r