export_prune_model.py 4.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..', '..', '..'))
sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))

import paddle
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
L
LDOUBLEV 已提交
30

L
LDOUBLEV 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
33
from ppocr.utils.save_load import load_model
L
LDOUBLEV 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
import tools.program as program


def main(config, device, logger, vdl_writer):

    global_config = config['Global']

    # build dataloader
    valid_dataloader = build_dataloader(config, 'Eval', device, logger)

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
        config['Architecture']["Head"]['out_channels'] = char_num
    model = build_model(config['Architecture'])

    flops = paddle.flops(model, [1, 3, 640, 640])
    logger.info(f"FLOPs before pruning: {flops}")

    from paddleslim.dygraph import FPGMFilterPruner
    model.train()
    pruner = FPGMFilterPruner(model, [1, 3, 640, 640])

    # build metric
    eval_class = build_metric(config['Metric'])

    def eval_fn():
        metric = program.eval(model, valid_dataloader, post_process_class,
                              eval_class)
        logger.info(f"metric['hmean']: {metric['hmean']}")
        return metric['hmean']

    params_sensitive = pruner.sensitive(
        eval_func=eval_fn,
        sen_file="./sen.pickle",
        skip_vars=[
            "conv2d_57.w_0", "conv2d_transpose_2.w_0", "conv2d_transpose_3.w_0"
        ])

    logger.info(
        "The sensitivity analysis results of model parameters saved in sen.pickle"
    )
    # calculate pruned params's ratio
    params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
    for key in params_sensitive.keys():
        logger.info(f"{key}, {params_sensitive[key]}")

    plan = pruner.prune_vars(params_sensitive, [0])

    flops = paddle.flops(model, [1, 3, 640, 640])
    logger.info(f"FLOPs after pruning: {flops}")

    # load pretrain model
92
    load_model(config, model)
L
LDOUBLEV 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    metric = program.eval(model, valid_dataloader, post_process_class,
                          eval_class)
    logger.info(f"metric['hmean']: {metric['hmean']}")

    # start export model
    from paddle.jit import to_static

    infer_shape = [3, -1, -1]
    if config['Architecture']['model_type'] == "rec":
        infer_shape = [3, 32, -1]  # for rec model, H must be 32

        if 'Transform' in config['Architecture'] and config['Architecture'][
                'Transform'] is not None and config['Architecture'][
                    'Transform']['name'] == 'TPS':
            logger.info(
                'When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training'
            )
            infer_shape[-1] = 100
    model = to_static(
        model,
        input_spec=[
            paddle.static.InputSpec(
                shape=[None] + infer_shape, dtype='float32')
        ])

    save_path = '{}/inference'.format(config['Global']['save_inference_dir'])
    paddle.jit.save(model, save_path)
    logger.info('inference model is saved to {}'.format(save_path))


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess(is_train=True)
    main(config, device, logger, vdl_writer)