predict_rec.py 21.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
T
Topdu 已提交
16
from PIL import Image
17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey 已提交
19
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
W
WenmuZhou 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
34

W
WenmuZhou 已提交
35 36
logger = get_logger()

L
LDOUBLEV 已提交
37 38 39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
42
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
43 44
        postprocess_params = {
            'name': 'CTCLabelDecode',
45
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
46
            "use_space_char": args.use_space_char
T
tink2123 已提交
47
        }
T
tink2123 已提交
48 49 50
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
51 52 53 54 55 56
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
57 58 59
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
60 61 62 63 64 65
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
66 67 68 69 70 71
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
A
add vl  
andyjpaddle 已提交
72 73 74 75 76 77
        elif self.rec_algorithm == "VisionLAN":
            postprocess_params = {
                'name': 'VLLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
78 79 80 81 82 83 84 85 86 87 88 89
        elif self.rec_algorithm == 'ViTSTR':
            postprocess_params = {
                'name': 'ViTSTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == 'ABINet':
            postprocess_params = {
                'name': 'ABINetLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
xuyang2233's avatar
add pr  
xuyang2233 已提交
90 91 92 93 94 95
        elif self.rec_algorithm == "SPIN":
            postprocess_params = {
                'name': 'SPINAttnLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
96
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
97
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
W
WenmuZhou 已提交
98
            utility.create_predictor(args, 'rec', logger)
T
tink2123 已提交
99
        self.benchmark = args.benchmark
T
tink2123 已提交
100
        self.use_onnx = args.use_onnx
T
tink2123 已提交
101 102 103
        if args.benchmark:
            import auto_log
            pid = os.getpid()
L
LDOUBLEV 已提交
104
            gpu_id = utility.get_infer_gpuid()
T
tink2123 已提交
105 106 107
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
T
tink2123 已提交
108
                batch_size=args.rec_batch_num,
T
tink2123 已提交
109
                data_shape="dynamic",
110
                save_path=None,  #args.save_log_path,
T
tink2123 已提交
111 112 113
                inference_config=self.config,
                pids=pid,
                process_name=None,
L
LDOUBLEV 已提交
114
                gpu_ids=gpu_id if args.use_gpu else None,
T
tink2123 已提交
115 116 117
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
T
tink2123 已提交
118
                warmup=0,
119
                logger=logger)
L
LDOUBLEV 已提交
120

121
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
122
        imgC, imgH, imgW = self.rec_image_shape
123
        if self.rec_algorithm == 'NRTR' or self.rec_algorithm == 'ViTSTR':
T
Topdu 已提交
124 125 126
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
127 128 129 130
            if self.rec_algorithm == 'ViTSTR':
                img = image_pil.resize([imgW, imgH], Image.BICUBIC)
            else:
                img = image_pil.resize([imgW, imgH], Image.ANTIALIAS)
T
Topdu 已提交
131 132 133
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
134 135 136 137 138
            if self.rec_algorithm == 'ViTSTR':
                norm_img = norm_img.astype(np.float32) / 255.
            else:
                norm_img = norm_img.astype(np.float32) / 128. - 1.
            return norm_img
T
Topdu 已提交
139

140
        assert imgC == img.shape[2]
A
andyjpaddle 已提交
141
        imgW = int((imgH * max_wh_ratio))
T
tink2123 已提交
142
        if self.use_onnx:
143 144 145 146
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

147
        h, w = img.shape[:2]
148 149 150 151 152
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
A
andyjpaddle 已提交
153 154 155 156
        if self.rec_algorithm == 'RARE':
            if resized_w > self.rec_image_shape[2]:
                resized_w = self.rec_image_shape[2]
            imgW = self.rec_image_shape[2]
T
tink2123 已提交
157
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
158 159 160 161 162 163 164
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im
T
tink2123 已提交
165

A
add vl  
andyjpaddle 已提交
166 167 168 169 170 171 172 173 174
    def resize_norm_img_vl(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        return resized_image

T
tink2123 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

T
Topdu 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

xuyang2233's avatar
add pr  
xuyang2233 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    def resize_norm_img_spin(self, img):
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # return padding_im
        img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
        img = np.array(img, np.float32)
        img = np.expand_dims(img, -1)
        img = img.transpose((2, 0, 1))
        mean = [127.5]
        std = [127.5]
        mean = np.array(mean, dtype=np.float32)
        std = np.array(std, dtype=np.float32)
        mean = np.float32(mean.reshape(1, -1))
        stdinv = 1 / np.float32(std.reshape(1, -1))
        img -= mean
        img *= stdinv
        return img
298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    def resize_norm_img_svtr(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        return resized_image

    def resize_norm_img_abinet(self, img, image_shape):

        imgC, imgH, imgW = image_shape

        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image / 255.

        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        resized_image = (
            resized_image - mean[None, None, ...]) / std[None, None, ...]
        resized_image = resized_image.transpose((2, 0, 1))
        resized_image = resized_image.astype('float32')

        return resized_image

L
LDOUBLEV 已提交
328 329
    def __call__(self, img_list):
        img_num = len(img_list)
330
        # Calculate the aspect ratio of all text bars
331 332 333
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
334
        # Sorting can speed up the recognition process
335 336
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
337
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
338
        st = time.time()
T
tink2123 已提交
339 340
        if self.benchmark:
            self.autolog.times.start()
L
LDOUBLEV 已提交
341 342 343
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
A
andyjpaddle 已提交
344 345 346
            imgC, imgH, imgW = self.rec_image_shape
            max_wh_ratio = imgW / imgH
            # max_wh_ratio = 0
L
LDOUBLEV 已提交
347
            for ino in range(beg_img_no, end_img_no):
348
                h, w = img_list[indices[ino]].shape[0:2]
349 350 351
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
352

T
Topdu 已提交
353
                if self.rec_algorithm == "SAR":
T
Topdu 已提交
354 355 356 357 358 359 360
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
T
Topdu 已提交
361
                elif self.rec_algorithm == "SRN":
L
LDOUBLEV 已提交
362 363
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
T
tink2123 已提交
364 365 366 367 368 369 370 371 372
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
T
Topdu 已提交
373
                elif self.rec_algorithm == "SVTR":
T
tink2123 已提交
374 375
                    norm_img = self.resize_norm_img_svtr(img_list[indices[ino]],
                                                         self.rec_image_shape)
A
add vl  
andyjpaddle 已提交
376 377 378 379 380
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                elif self.rec_algorithm == "VisionLAN":
                    norm_img = self.resize_norm_img_vl(img_list[indices[ino]],
                                                       self.rec_image_shape)
A
add vl  
andyjpaddle 已提交
381 382
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
xuyang2233's avatar
add pr  
xuyang2233 已提交
383 384
                elif self.rec_algorithm == 'SPIN':
                    norm_img = self.resize_norm_img_spin(img_list[indices[ino]])
xuyang2233's avatar
xuyang2233 已提交
385 386
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
387 388 389
                elif self.rec_algorithm == "ABINet":
                    norm_img = self.resize_norm_img_abinet(
                        img_list[indices[ino]], self.rec_image_shape)
T
Topdu 已提交
390 391 392 393 394 395 396
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
L
LDOUBLEV 已提交
397 398
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
399 400
            if self.benchmark:
                self.autolog.times.stamp()
T
tink2123 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
T
tink2123 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = {"predict": outputs[2]}
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = {"predict": outputs[2]}
T
Topdu 已提交
437 438 439 440 441 442
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
                    valid_ratios,
                ]
T
tink2123 已提交
443 444 445 446 447 448
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
T
Topdu 已提交
449
                else:
T
tink2123 已提交
450 451 452 453 454 455 456 457 458 459 460 461
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
T
Topdu 已提交
462
                    preds = outputs[0]
T
tink2123 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
            else:
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    if len(outputs) != 1:
                        preds = outputs
                    else:
                        preds = outputs[0]
W
WenmuZhou 已提交
483 484 485
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
T
tink2123 已提交
486 487
            if self.benchmark:
                self.autolog.times.end(stamp=True)
L
LDOUBLEV 已提交
488
        return rec_res, time.time() - st
L
LDOUBLEV 已提交
489 490


491
def main(args):
D
dyning 已提交
492
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
493 494 495
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
L
LDOUBLEV 已提交
496

T
tink2123 已提交
497 498
    logger.info(
        "In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
T
tink2123 已提交
499
        "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
T
tink2123 已提交
500
    )
501
    # warmup 2 times
L
LDOUBLEV 已提交
502
    if args.warmup:
T
tink2123 已提交
503
        img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8)
504
        for i in range(2):
L
LDOUBLEV 已提交
505
            res = text_recognizer([img] * int(args.rec_batch_num))
L
LDOUBLEV 已提交
506

L
LDOUBLEV 已提交
507
    for image_file in image_file_list:
L
LDOUBLEV 已提交
508 509 510
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
511 512 513 514 515
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
LDOUBLEV 已提交
516 517 518 519 520 521 522 523 524 525
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
T
tink2123 已提交
526 527
    if args.benchmark:
        text_recognizer.autolog.report()
528 529 530 531


if __name__ == "__main__":
    main(utility.parse_args())