README.md 14.3 KB
Newer Older
W
WenmuZhou 已提交
1 2
English | [简体中文](README_ch.md)

D
Daniel Yang 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15
------------------------------------------------------------------------------------------

<p align="left">
    <a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
    <a href="https://github.com/PaddlePaddle/PaddleOCR/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleOCR?color=ffa"></a>
    <a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
    <a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
    <a href=""><img src="https://img.shields.io/pypi/format/PaddleOCR?color=c77"></a>
    <a href="https://github.com/PaddlePaddle/PaddleOCR/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleOCR?color=9ea"></a>
    <a href="https://pypi.org/project/PaddleOCR/"><img src="https://img.shields.io/pypi/dm/PaddleOCR?color=9cf"></a>
    <a href="https://github.com/PaddlePaddle/PaddleOCR/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleOCR?color=ccf"></a>
</p>

W
WenmuZhou 已提交
16
## Introduction
L
LDOUBLEV 已提交
17
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
W
WenmuZhou 已提交
18

G
grasswolfs 已提交
19 20
## Notice
PaddleOCR supports both dynamic graph and static graph programming paradigm
21
- Dynamic graph: dygraph branch (default), **supported by paddle 2.0.0 ([installation](./doc/doc_en/installation_en.md))**
G
grasswolfs 已提交
22 23
- Static graph: develop branch

W
WenmuZhou 已提交
24
**Recent updates**
D
Daniel Yang 已提交
25
- 2021.4.8 release end-to-end text recognition algorithm [PGNet](https://www.aaai.org/AAAI21Papers/AAAI-2885.WangP.pdf) which is published in AAAI 2021. Find tutorial [here](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/pgnet_en.md);release multi language recognition [models](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md), support more than 80 languages recognition; especically, the performance of [English recognition model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/models_list_en.md#English) is Optimized.
D
Daniel Yang 已提交
26
- 2021.1.21 update more than 25+ multilingual recognition models [models list](./doc/doc_en/models_list_en.md), including:English, Chinese, German, French, Japanese,Spanish,Portuguese Russia Arabic and so on.  Models for more languages will continue to be updated [Develop Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).
M
MissPenguin 已提交
27
- 2020.12.15 update Data synthesis tool, i.e., [Style-Text](./StyleText/README.md),easy to synthesize a large number of images which are similar to the target scene image.
G
grasswolfs 已提交
28
- 2020.11.25 Update a new data annotation tool, i.e., [PPOCRLabel](./PPOCRLabel/README.md), which is helpful to improve the labeling efficiency. Moreover, the labeling results can be used in training of the PP-OCR system directly.
W
WenmuZhou 已提交
29 30 31 32 33
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
- [more](./doc/doc_en/update_en.md)

## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
G
grasswolfs 已提交
34 35 36 37
    - Ultra lightweight ppocr_mobile series models: detection (3.0M) + direction classifier (1.4M) + recognition (5.0M) = 9.4M
    - General ppocr_server series models: detection (47.1M) + direction classifier (1.4M) + recognition (94.9M) = 143.4M
    - Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
    - Support multi-language recognition: Korean, Japanese, German, French
G
grasswolfs 已提交
38
- Rich toolkits related to the OCR areas
G
grasswolfs 已提交
39 40
    - Semi-automatic data annotation tool, i.e., PPOCRLabel: support fast and efficient data annotation
    - Data synthesis tool, i.e., Style-Text: easy to synthesize a large number of images which are similar to the target scene image
W
WenmuZhou 已提交
41 42 43 44 45
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems

## Visualization
46

W
WenmuZhou 已提交
47
<div align="center">
L
LDOUBLEV 已提交
48
    <img src="doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
T
tink2123 已提交
49 50
    <img src="doc/imgs_results/multi_lang/img_01.jpg" width="800">
    <img src="doc/imgs_results/multi_lang/img_02.jpg" width="800">
W
WenmuZhou 已提交
51 52 53
</div>

The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
D
dyning 已提交
54

L
LDOUBLEV 已提交
55 56 57 58 59
<a name="Community"></a>
## Community
- Scan the QR code below with your Wechat, you can access to official technical exchange group. Look forward to your participation.

<div align="center">
D
Daniel Yang 已提交
60
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/dygraph/doc/joinus.PNG"  width = "200" height = "200" />
L
LDOUBLEV 已提交
61 62 63
</div>


W
WenmuZhou 已提交
64
## Quick Experience
D
dyning 已提交
65

W
WenmuZhou 已提交
66
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
D
dyning 已提交
67

W
WenmuZhou 已提交
68
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
T
tink2123 已提交
69

W
WenmuZhou 已提交
70
 Also, you can scan the QR code below to install the App (**Android support only**)
L
LDOUBLEV 已提交
71

G
grasswolfs 已提交
72
<div align="center">
W
WenmuZhou 已提交
73
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
G
grasswolfs 已提交
74
</div>
D
dyning 已提交
75

W
WenmuZhou 已提交
76 77 78 79
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

L
LDOUBLEV 已提交
80

T
tink2123 已提交
81
## PP-OCR 2.0 series model list(Update on Dec 15)
M
MissPenguin 已提交
82
**Note** : Compared with [models 1.1](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/models_list_en.md), which are trained with static graph programming paradigm, models 2.0 are the dynamic graph trained version and achieve close performance.
W
WenmuZhou 已提交
83 84 85

| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
G
grasswolfs 已提交
86 87
| Chinese and English ultra-lightweight OCR model (9.4M)       | ch_ppocr_mobile_v2.0_xx      | Mobile & server   |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar)      |
| Chinese and English general OCR model (143.4M)               | ch_ppocr_server_v2.0_xx      | Server            |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar)    |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar)  |  
L
LDOUBLEV 已提交
88

W
WenmuZhou 已提交
89

L
LDOUBLEV 已提交
90
For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md).
W
WenmuZhou 已提交
91

L
LDOUBLEV 已提交
92
For a new language request, please refer to [Guideline for new language_requests](#language_requests).
W
WenmuZhou 已提交
93 94 95

## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
D
Daniel Yang 已提交
96 97
- [Quick Start(Chinese)](./doc/doc_en/quickstart_en.md)
- [Quick Start(English&Multi-languages)](./doc/doc_en/multi_languages_en.md)
W
WenmuZhou 已提交
98
- [Code Structure](./doc/doc_en/tree_en.md)
L
LDOUBLEV 已提交
99
- Algorithm Introduction
W
WenmuZhou 已提交
100 101
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
L
LDOUBLEV 已提交
102 103
    - [PP-OCR Pipeline](#PP-OCR-Pipeline)
- Model Training/Evaluation
W
WenmuZhou 已提交
104 105 106 107 108
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
L
LDOUBLEV 已提交
109
    - [Quick Inference Based on PIP](./doc/doc_en/whl_en.md)
W
WenmuZhou 已提交
110 111
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
M
MissPenguin 已提交
112
    - [Serving](./deploy/pdserving/README.md)
M
MissPenguin 已提交
113
    - [Mobile](./deploy/lite/readme_en.md)
L
LDOUBLEV 已提交
114 115
    - [Benchmark](./doc/doc_en/benchmark_en.md)  
- Data Annotation and Synthesis
G
grasswolfs 已提交
116
    - [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
D
dyning 已提交
117
    - [Data Synthesis Tool: Style-Text](./StyleText/README.md)
G
grasswolfs 已提交
118 119
    - [Other Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
W
WenmuZhou 已提交
120 121 122 123 124
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
L
LDOUBLEV 已提交
125
- [New language requests](#language_requests)
W
WenmuZhou 已提交
126 127 128 129 130 131 132
- [FAQ](./doc/doc_en/FAQ_en.md)
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)


L
LDOUBLEV 已提交
133 134 135 136

<a name="PP-OCR-Pipeline"></a>

## PP-OCR Pipeline
D
dyning 已提交
137 138

<div align="center">
W
WenmuZhou 已提交
139
    <img src="./doc/ppocr_framework.png" width="800">
D
dyning 已提交
140 141
</div>

D
dyning 已提交
142
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection[2], detection frame correction and CRNN text recognition[7]. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner [8] and PACT quantization [9] is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).
D
dyning 已提交
143

T
tink2123 已提交
144

W
WenmuZhou 已提交
145 146
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
D
dyning 已提交
147
<div align="center">
L
LDOUBLEV 已提交
148
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
L
LDOUBLEV 已提交
149 150
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
L
LDOUBLEV 已提交
151
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
D
dyning 已提交
152
</div>
T
tink2123 已提交
153

W
WenmuZhou 已提交
154
- English OCR model
D
dyning 已提交
155
<div align="center">
L
LDOUBLEV 已提交
156
    <img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
D
dyning 已提交
157
</div>
158

W
WenmuZhou 已提交
159
- Multilingual OCR model
D
dyning 已提交
160
<div align="center">
L
LDOUBLEV 已提交
161
    <img src="./doc/imgs_results/french_0.jpg" width="800">
L
LDOUBLEV 已提交
162
    <img src="./doc/imgs_results/korean.jpg" width="800">
D
dyning 已提交
163
</div>
T
tink2123 已提交
164

D
dyning 已提交
165

L
LDOUBLEV 已提交
166 167 168 169 170
<a name="language_requests"></a>
## Guideline for new language requests

If you want to request a new language support, a PR with 2 following files are needed:

G
grasswolfs 已提交
171
1. In folder [ppocr/utils/dict](./ppocr/utils/dict),
L
LDOUBLEV 已提交
172 173
it is necessary to submit the dict text to this path and name it with `{language}_dict.txt` that contains a list of all characters. Please see the format example from other files in that folder.

G
grasswolfs 已提交
174
2. In folder [ppocr/utils/corpus](./ppocr/utils/corpus),
L
LDOUBLEV 已提交
175 176 177 178 179 180 181 182
it is necessary to submit the corpus to this path and name it with `{language}_corpus.txt` that contains a list of words in your language.
Maybe, 50000 words per language is necessary at least.
Of course, the more, the better.

If your language has unique elements, please tell me in advance within any way, such as useful links, wikipedia and so on.

More details, please refer to [Multilingual OCR Development Plan](https://github.com/PaddlePaddle/PaddleOCR/issues/1048).

M
MissPenguin 已提交
183

W
WenmuZhou 已提交
184 185 186 187 188 189 190 191 192
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
L
littletomatodonkey 已提交
193
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitignore and discard set PYTHONPATH manually.
W
WenmuZhou 已提交
194 195 196 197 198
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.
L
LDOUBLEV 已提交
199 200 201 202
- Thanks [lijinhan](https://github.com/lijinhan) for contributing a new way, i.e., java SpringBoot, to achieve the request for the Hubserving deployment.
- Thanks [Mejans](https://github.com/Mejans) for contributing the Occitan corpus and character set.
- Thanks [LKKlein](https://github.com/LKKlein) for contributing a new deploying package with the Golang program language.
- Thanks [Evezerest](https://github.com/Evezerest), [ninetailskim](https://github.com/ninetailskim), [edencfc](https://github.com/edencfc), [BeyondYourself](https://github.com/BeyondYourself) and [1084667371](https://github.com/1084667371) for contributing a new data annotation tool, i.e., PPOCRLabel。