utility.py 25.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
文幕地方's avatar
文幕地方 已提交
18
import platform
L
LDOUBLEV 已提交
19 20
import cv2
import numpy as np
Z
zhoujun 已提交
21
import paddle
L
LDOUBLEV 已提交
22
from PIL import Image, ImageDraw, ImageFont
23
import math
W
WenmuZhou 已提交
24
from paddle import inference
L
LDOUBLEV 已提交
25 26
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
27

L
LDOUBLEV 已提交
28

29 30
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
31 32


W
WenmuZhou 已提交
33
def init_args():
L
LDOUBLEV 已提交
34
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
35
    # params for prediction engine
L
LDOUBLEV 已提交
36
    parser.add_argument("--use_gpu", type=str2bool, default=True)
X
xiaoting 已提交
37
    parser.add_argument("--use_xpu", type=str2bool, default=False)
L
LDOUBLEV 已提交
38 39
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
40
    parser.add_argument("--min_subgraph_size", type=int, default=15)
L
LDOUBLEV 已提交
41
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
42
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
43

W
WenmuZhou 已提交
44
    # params for text detector
L
LDOUBLEV 已提交
45 46 47
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
48 49
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
50

W
WenmuZhou 已提交
51
    # DB parmas
L
LDOUBLEV 已提交
52
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
53 54
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
55
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
56
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
57
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
L
LDOUBLEV 已提交
58
    parser.add_argument("--visual_output", type=str2bool, default=False)
W
WenmuZhou 已提交
59
    # EAST parmas
L
LDOUBLEV 已提交
60 61 62 63
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
64
    # SAST parmas
L
licx 已提交
65 66
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
67
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
68

W
WenmuZhou 已提交
69 70 71 72
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
文幕地方's avatar
文幕地方 已提交
73
    parser.add_argument("--det_pse_box_type", type=str, default='quad')
W
WenmuZhou 已提交
74 75
    parser.add_argument("--det_pse_scale", type=int, default=1)

文幕地方's avatar
文幕地方 已提交
76 77 78 79 80 81 82
    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)
    parser.add_argument("--det_fce_box_type", type=str, default='poly')

W
WenmuZhou 已提交
83
    # params for text recognizer
A
andyjpaddle 已提交
84
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
L
LDOUBLEV 已提交
85
    parser.add_argument("--rec_model_dir", type=str)
X
xiaoting 已提交
86
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
L
LDOUBLEV 已提交
87
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
88
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
89 90 91 92
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
93 94
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
95
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
96
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
97

J
Jethong 已提交
98 99 100 101 102 103 104 105 106
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
107
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
108
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
109
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
110

W
WenmuZhou 已提交
111 112 113 114 115
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
116
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
117 118 119
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
120
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
121
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
122 123 124 125 126 127 128
    parser.add_argument("--warmup", type=str2bool, default=False)

    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
W
WenmuZhou 已提交
129

L
LDOUBLEV 已提交
130
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
131
    parser.add_argument("--use_mp", type=str2bool, default=False)
132 133
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
134

littletomatodonkey's avatar
littletomatodonkey 已提交
135
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
136
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
137

W
WenmuZhou 已提交
138
    parser.add_argument("--show_log", type=str2bool, default=True)
T
tink2123 已提交
139
    parser.add_argument("--use_onnx", type=str2bool, default=False)
W
WenmuZhou 已提交
140
    return parser
W
WenmuZhou 已提交
141

142

143
def parse_args():
W
WenmuZhou 已提交
144
    parser = init_args()
L
LDOUBLEV 已提交
145 146 147
    return parser.parse_args()


W
WenmuZhou 已提交
148 149 150 151 152
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
153
    elif mode == 'rec':
W
WenmuZhou 已提交
154
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
155 156
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
157 158
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
159 160 161 162

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
T
tink2123 已提交
163 164 165 166 167 168 169 170
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
L
LDOUBLEV 已提交
171

L
LDOUBLEV 已提交
172
    else:
T
tink2123 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        model_file_path = model_dir + "/inference.pdmodel"
        params_file_path = model_dir + "/inference.pdiparams"
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        if not os.path.exists(params_file_path):
            raise ValueError("not find params file path {}".format(
                params_file_path))

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
L
LDOUBLEV 已提交
191
        else:
T
tink2123 已提交
192 193 194 195 196
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
L
LDOUBLEV 已提交
197
                logger.warning(
198
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
T
tink2123 已提交
199 200 201 202
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
203
                    workspace_size=1 << 30,
T
tink2123 已提交
204 205 206 207
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
                    min_subgraph_size=args.min_subgraph_size)
                # skip the minmum trt subgraph
L
fix trt  
LDOUBLEV 已提交
208
            use_dynamic_shape = True
L
fix  
LDOUBLEV 已提交
209
            if mode == "det":
T
tink2123 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
L
fix trt  
LDOUBLEV 已提交
225
                    "x": [1, 3, 1536, 1536],
T
tink2123 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
A
andyjpaddle 已提交
274
                if args.rec_algorithm not in ["CRNN", "SVTR_LCNet"]:
L
fix trt  
LDOUBLEV 已提交
275
                    use_dynamic_shape = False
276 277
                imgH = int(args.rec_image_shape.split(',')[-2])
                min_input_shape = {"x": [1, 3, imgH, 10]}
A
andyjpaddle 已提交
278
                max_input_shape = {"x": [args.rec_batch_num, 3, imgH, 2304]}
279
                opt_input_shape = {"x": [args.rec_batch_num, 3, imgH, 320]}
A
 
Armin 已提交
280
                config.exp_disable_tensorrt_ops(["transpose2"])
T
tink2123 已提交
281 282
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
L
LDOUBLEV 已提交
283
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
T
tink2123 已提交
284 285
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
            else:
L
fix trt  
LDOUBLEV 已提交
286 287
                use_dynamic_shape = False
            if use_dynamic_shape:
A
andyjpaddle 已提交
288 289
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)
L
LDOUBLEV 已提交
290

X
xiaoting 已提交
291 292
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
L
LDOUBLEV 已提交
293
        else:
T
tink2123 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
            config.disable_gpu()
            if hasattr(args, "cpu_threads"):
                config.set_cpu_math_library_num_threads(args.cpu_threads)
            else:
                # default cpu threads as 10
                config.set_cpu_math_library_num_threads(10)
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
        # enable memory optim
        config.enable_memory_optim()
        config.disable_glog_info()
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
T
tink2123 已提交
310
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
T
tink2123 已提交
311 312 313 314 315 316 317 318 319 320
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
        for name in input_names:
            input_tensor = predictor.get_input_handle(name)
L
LDOUBLEV 已提交
321 322 323 324 325 326 327
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
A
andyjpaddle 已提交
328
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
L
LDOUBLEV 已提交
329 330 331
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
L
LDOUBLEV 已提交
332 333 334 335
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
336
    else:
T
tink2123 已提交
337 338 339
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
340
    return output_tensors
W
WenmuZhou 已提交
341 342


L
LDOUBLEV 已提交
343
def get_infer_gpuid():
文幕地方's avatar
文幕地方 已提交
344 345 346 347
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

R
ronny1996 已提交
348 349 350 351
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
L
LDOUBLEV 已提交
352 353 354 355 356 357 358 359
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
376
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
377 378 379 380
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
381
    return src_im
L
LDOUBLEV 已提交
382 383


L
LDOUBLEV 已提交
384 385
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
386
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
387 388 389 390 391
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
392 393
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
394 395


W
WenmuZhou 已提交
396 397 398 399 400
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
401
             font_path="./doc/fonts/simfang.ttf"):
402 403 404
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
405
        image(Image|array): RGB image
406 407 408 409
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
410
        font_path: the path of font which is used to draw text
411 412 413
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
414 415
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
416 417 418 419
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
420
            continue
W
WenmuZhou 已提交
421
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
422
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
423
    if txts is not None:
L
LDOUBLEV 已提交
424
        img = np.array(resize_img(image, input_size=600))
425
        txt_img = text_visual(
W
WenmuZhou 已提交
426 427 428 429 430 431
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
432
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
433 434
        return img
    return image
435 436


W
WenmuZhou 已提交
437 438 439 440 441 442
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
443 444 445
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
446 447

    import random
L
LDOUBLEV 已提交
448

449 450 451
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
452 453 454
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
455 456
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
457
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
458 459 460 461 462 463 464 465 466 467
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
468 469
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
470
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
471 472 473
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
474 475
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
476 477 478
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
479
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
480 481
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
482 483 484 485
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
486 487 488
    return np.array(img_show)


489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
513 514 515 516 517 518
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
519 520 521 522 523 524 525
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
526
        font_path: the path of font which is used to draw text
527 528 529 530 531 532 533 534 535
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
536 537
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
538
        return blank_img, draw_txt
L
LDOUBLEV 已提交
539

540 541 542 543
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
544
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
545 546 547

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
548
    count, index = 1, 0
549 550
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
551
        if scores[idx] < threshold or math.isnan(scores[idx]):
552 553 554 555 556 557 558 559 560 561 562
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
563
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
564 565 566 567 568
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
569
            count += 1
570 571 572
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
573
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
574
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
575
        # whether add new blank img or not
L
LDOUBLEV 已提交
576
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
577 578 579
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
580
        count += 1
581 582 583 584 585 586
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
587 588


D
dyning 已提交
589 590 591
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
P
paopjian 已提交
592
    data = np.frombuffer(data, np.uint8)
D
dyning 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


Z
zhoujun 已提交
643 644 645 646 647 648
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


L
LDOUBLEV 已提交
649
if __name__ == '__main__':
L
LDOUBLEV 已提交
650
    pass