tps_torch.py 6.1 KB
Newer Older
T
tink2123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
from __future__ import absolute_import

import numpy as np
import itertools

import torch
import torch.nn as nn
import torch.nn.functional as F


def grid_sample(input, grid, canvas=None):
    output = F.grid_sample(input, grid)
    if canvas is None:
        return output
    else:
        input_mask = input.data.new(input.size()).fill_(1)
        output_mask = F.grid_sample(input_mask, grid)
        padded_output = output * output_mask + canvas * (1 - output_mask)
        return padded_output


# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
def compute_partial_repr(input_points, control_points):
    N = input_points.size(0)
    M = control_points.size(0)
    pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2)
    # original implementation, very slow
    # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
    pairwise_diff_square = pairwise_diff * pairwise_diff
    pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
                                                                         1]
    repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist)
    # fix numerical error for 0 * log(0), substitute all nan with 0
    mask = repr_matrix != repr_matrix
    repr_matrix.masked_fill_(mask, 0)
    return repr_matrix


# output_ctrl_pts are specified, according to our task.
def build_output_control_points(num_control_points, margins):
    margin_x, margin_y = margins
    num_ctrl_pts_per_side = num_control_points // 2
    ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
    ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
    ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
    ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
    ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
    # ctrl_pts_top = ctrl_pts_top[1:-1,:]
    # ctrl_pts_bottom = ctrl_pts_bottom[1:-1,:]
    output_ctrl_pts_arr = np.concatenate(
        [ctrl_pts_top, ctrl_pts_bottom], axis=0)
    output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr)
    return output_ctrl_pts


# demo: ~/test/models/test_tps_transformation.py
class TPSSpatialTransformer(nn.Module):
    def __init__(self,
                 output_image_size=None,
                 num_control_points=None,
                 margins=None):
        super(TPSSpatialTransformer, self).__init__()
        self.output_image_size = output_image_size
        self.num_control_points = num_control_points
        self.margins = margins

        self.target_height, self.target_width = output_image_size
        target_control_points = build_output_control_points(num_control_points,
                                                            margins)
        N = num_control_points
        # N = N - 4

        # create padded kernel matrix
        forward_kernel = torch.zeros(N + 3, N + 3)
        target_control_partial_repr = compute_partial_repr(
            target_control_points, target_control_points)
        forward_kernel[:N, :N].copy_(target_control_partial_repr)
        forward_kernel[:N, -3].fill_(1)
        forward_kernel[-3, :N].fill_(1)
        forward_kernel[:N, -2:].copy_(target_control_points)
        forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1))
        # compute inverse matrix
        inverse_kernel = torch.inverse(forward_kernel)

        # create target cordinate matrix
        HW = self.target_height * self.target_width
        target_coordinate = list(
            itertools.product(
                range(self.target_height), range(self.target_width)))
        target_coordinate = torch.Tensor(target_coordinate)  # HW x 2
        Y, X = target_coordinate.split(1, dim=1)
        Y = Y / (self.target_height - 1)
        X = X / (self.target_width - 1)
        target_coordinate = torch.cat([X, Y],
                                      dim=1)  # convert from (y, x) to (x, y)
        target_coordinate_partial_repr = compute_partial_repr(
            target_coordinate, target_control_points)
        target_coordinate_repr = torch.cat([
            target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate
        ],
                                           dim=1)

        # register precomputed matrices
        self.register_buffer('inverse_kernel', inverse_kernel)
        self.register_buffer('padding_matrix', torch.zeros(3, 2))
        self.register_buffer('target_coordinate_repr', target_coordinate_repr)
        self.register_buffer('target_control_points', target_control_points)

    def forward(self, input, source_control_points):
        assert source_control_points.ndimension() == 3
        assert source_control_points.size(1) == self.num_control_points
        assert source_control_points.size(2) == 2
        batch_size = source_control_points.size(0)

        Y = torch.cat([
            source_control_points, self.padding_matrix.expand(batch_size, 3, 2)
        ], 1)
        mapping_matrix = torch.matmul(self.inverse_kernel, Y)
        source_coordinate = torch.matmul(self.target_coordinate_repr,
                                         mapping_matrix)

        grid = source_coordinate.view(-1, self.target_height, self.target_width,
                                      2)
        grid = torch.clamp(grid, 0,
                           1)  # the source_control_points may be out of [0, 1].
        # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
        grid = 2.0 * grid - 1.0
        output_maps = grid_sample(input, grid, canvas=None)
        return output_maps, source_coordinate


if __name__ == "__main__":
    from stn_torch import STNHead
    in_planes = 3
    num_ctrlpoints = 20
    torch.manual_seed(10)
    activation = 'none'  # 'sigmoid'
    stn_head = STNHead(in_planes, num_ctrlpoints, activation)
    np.random.seed(100)
    data = np.random.randn(10, 3, 32, 64).astype("float32")
    input = torch.tensor(data)
    control_points = stn_head(input)
    tps = TPSSpatialTransformer(
        output_image_size=[32, 320],
        num_control_points=20,
        margins=[0.05, 0.05])
    out = tps(input, control_points[1])
    print("out 0 :", out[0].shape)
    print("out 1:", out[1].shape)