export_center.py 2.6 KB
Newer Older
B
Bin Lu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import pickle

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
30
from ppocr.utils.save_load import load_model
B
Bin Lu 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
from ppocr.utils.utility import print_dict
import tools.program as program


def main():
    global_config = config['Global']
    # build dataloader
    config['Eval']['dataset']['name'] = config['Train']['dataset']['name']
    config['Eval']['dataset']['data_dir'] = config['Train']['dataset'][
        'data_dir']
    config['Eval']['dataset']['label_file_list'] = config['Train']['dataset'][
        'label_file_list']
    eval_dataloader = build_dataloader(config, 'Eval', device, logger)

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
        config['Architecture']["Head"]['out_channels'] = char_num

    #set return_features = True
    config['Architecture']["Head"]["return_feats"] = True

    model = build_model(config['Architecture'])

60
    best_model_dict = load_model(config, model)
B
Bin Lu 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    if len(best_model_dict):
        logger.info('metric in ckpt ***************')
        for k, v in best_model_dict.items():
            logger.info('{}:{}'.format(k, v))

    # get features from train data
    char_center = program.get_center(model, eval_dataloader, post_process_class)

    #serialize to disk
    with open("train_center.pkl", 'wb') as f:
        pickle.dump(char_center, f)
    return


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()