basic_loss.py 5.3 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddle.nn import L1Loss
from paddle.nn import MSELoss as L2Loss
from paddle.nn import SmoothL1Loss


class CELoss(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
25
    def __init__(self, epsilon=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        super().__init__()
        if epsilon is not None and (epsilon <= 0 or epsilon >= 1):
            epsilon = None
        self.epsilon = epsilon

    def _labelsmoothing(self, target, class_num):
        if target.shape[-1] != class_num:
            one_hot_target = F.one_hot(target, class_num)
        else:
            one_hot_target = target
        soft_target = F.label_smooth(one_hot_target, epsilon=self.epsilon)
        soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
        return soft_target

    def forward(self, x, label):
        loss_dict = {}
        if self.epsilon is not None:
            class_num = x.shape[-1]
            label = self._labelsmoothing(label, class_num)
            x = -F.log_softmax(x, axis=-1)
            loss = paddle.sum(x * label, axis=-1)
        else:
            if label.shape[-1] == x.shape[-1]:
                label = F.softmax(label, axis=-1)
                soft_label = True
            else:
                soft_label = False
            loss = F.cross_entropy(x, label=label, soft_label=soft_label)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
55 56


L
LDOUBLEV 已提交
57 58
class KLJSLoss(object):
    def __init__(self, mode='kl'):
59
        assert mode in ['kl', 'js', 'KL', 'JS'
L
LDOUBLEV 已提交
60
                        ], "mode can only be one of ['kl', 'KL', 'js', 'JS']"
L
LDOUBLEV 已提交
61 62
        self.mode = mode

L
fix cml  
LDOUBLEV 已提交
63
    def __call__(self, p1, p2, reduction="mean", eps=1e-5):
L
LDOUBLEV 已提交
64

L
LDOUBLEV 已提交
65
        if self.mode.lower() == 'kl':
littletomatodonkey's avatar
littletomatodonkey 已提交
66
            loss = paddle.multiply(p2,
L
fix cml  
LDOUBLEV 已提交
67
                                   paddle.log((p2 + eps) / (p1 + eps) + eps))
L
LDOUBLEV 已提交
68
            loss += paddle.multiply(
L
fix cml  
LDOUBLEV 已提交
69
                p1, paddle.log((p1 + eps) / (p2 + eps) + eps))
L
LDOUBLEV 已提交
70 71
            loss *= 0.5
        elif self.mode.lower() == "js":
littletomatodonkey's avatar
littletomatodonkey 已提交
72
            loss = paddle.multiply(
L
fix cml  
LDOUBLEV 已提交
73
                p2, paddle.log((2 * p2 + eps) / (p1 + p2 + eps) + eps))
74
            loss += paddle.multiply(
L
fix cml  
LDOUBLEV 已提交
75
                p1, paddle.log((2 * p1 + eps) / (p1 + p2 + eps) + eps))
L
LDOUBLEV 已提交
76
            loss *= 0.5
L
LDOUBLEV 已提交
77
        else:
littletomatodonkey's avatar
littletomatodonkey 已提交
78 79 80
            raise ValueError(
                "The mode.lower() if KLJSLoss should be one of ['kl', 'js']")

L
LDOUBLEV 已提交
81
        if reduction == "mean":
82 83 84
            loss = paddle.mean(loss, axis=[1, 2])
        elif reduction == "none" or reduction is None:
            return loss
L
LDOUBLEV 已提交
85
        else:
86 87 88
            loss = paddle.sum(loss, axis=[1, 2])

        return loss
L
LDOUBLEV 已提交
89 90


littletomatodonkey's avatar
littletomatodonkey 已提交
91 92 93 94 95
class DMLLoss(nn.Layer):
    """
    DMLLoss
    """

96
    def __init__(self, act=None, use_log=False):
littletomatodonkey's avatar
littletomatodonkey 已提交
97
        super().__init__()
98 99 100 101 102 103 104 105
        if act is not None:
            assert act in ["softmax", "sigmoid"]
        if act == "softmax":
            self.act = nn.Softmax(axis=-1)
        elif act == "sigmoid":
            self.act = nn.Sigmoid()
        else:
            self.act = None
106 107

        self.use_log = use_log
L
LDOUBLEV 已提交
108
        self.jskl_loss = KLJSLoss(mode="kl")
littletomatodonkey's avatar
littletomatodonkey 已提交
109

110 111 112 113 114 115 116
    def _kldiv(self, x, target):
        eps = 1.0e-10
        loss = target * (paddle.log(target + eps) - x)
        # batch mean loss
        loss = paddle.sum(loss) / loss.shape[0]
        return loss

littletomatodonkey's avatar
littletomatodonkey 已提交
117
    def forward(self, out1, out2):
118
        if self.act is not None:
A
andyjpaddle 已提交
119 120
            out1 = self.act(out1) + 1e-10
            out2 = self.act(out2) + 1e-10
121 122
        if self.use_log:
            # for recognition distillation, log is needed for feature map
L
LDOUBLEV 已提交
123 124
            log_out1 = paddle.log(out1)
            log_out2 = paddle.log(out2)
125 126
            loss = (
                self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0
L
LDOUBLEV 已提交
127
        else:
L
fix cml  
LDOUBLEV 已提交
128
            # distillation log is not needed for detection 
L
LDOUBLEV 已提交
129
            loss = self.jskl_loss(out1, out2)
littletomatodonkey's avatar
littletomatodonkey 已提交
130
        return loss
littletomatodonkey's avatar
littletomatodonkey 已提交
131 132 133 134 135 136 137 138


class DistanceLoss(nn.Layer):
    """
    DistanceLoss:
        mode: loss mode
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
139
    def __init__(self, mode="l2", **kargs):
140
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
141 142 143
        assert mode in ["l1", "l2", "smooth_l1"]
        if mode == "l1":
            self.loss_func = nn.L1Loss(**kargs)
144
        elif mode == "l2":
littletomatodonkey's avatar
littletomatodonkey 已提交
145 146 147 148 149
            self.loss_func = nn.MSELoss(**kargs)
        elif mode == "smooth_l1":
            self.loss_func = nn.SmoothL1Loss(**kargs)

    def forward(self, x, y):
littletomatodonkey's avatar
littletomatodonkey 已提交
150
        return self.loss_func(x, y)
151 152 153 154 155 156 157 158 159


class LossFromOutput(nn.Layer):
    def __init__(self, key='loss', reduction='none'):
        super().__init__()
        self.key = key
        self.reduction = reduction

    def forward(self, predicts, batch):
littletomatodonkey's avatar
littletomatodonkey 已提交
160 161 162
        loss = predicts
        if self.key is not None and isinstance(predicts, dict):
            loss = loss[self.key]
163 164 165 166 167
        if self.reduction == 'mean':
            loss = paddle.mean(loss)
        elif self.reduction == 'sum':
            loss = paddle.sum(loss)
        return {'loss': loss}