gaspin_transformer.py 12.5 KB
Newer Older
xuyang2233's avatar
xuyang2233 已提交
1
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
xuyang2233's avatar
add pr  
xuyang2233 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np
import itertools
import functools
from .tps import GridGenerator

'''This code is refer from:
https://github.com/hikopensource/DAVAR-Lab-OCR/davarocr/davar_rcg/models/transformations/gaspin_transformation.py
'''

class SP_TransformerNetwork(nn.Layer):
    """
    Sturture-Preserving Transformation (SPT) as Equa. (2) in Ref. [1]
    Ref: [1] SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition. AAAI-2021.
    """

    def __init__(self, nc=1, default_type=5):
        """ Based on SPIN
        Args:
            nc (int): number of input channels (usually in 1 or 3)
            default_type (int): the complexity of transformation intensities (by default set to 6 as the paper)
        """
        super(SP_TransformerNetwork, self).__init__()
        self.power_list = self.cal_K(default_type)
        self.sigmoid = nn.Sigmoid()
        self.bn = nn.InstanceNorm2D(nc)

    def cal_K(self, k=5):
        """

        Args:
            k (int): the complexity of transformation intensities (by default set to 6 as the paper)

        Returns:
            List: the normalized intensity of each pixel in [0,1], denoted as \beta [1x(2K+1)]

        """
        from math import log
        x = []
        if k != 0:
            for i in range(1, k+1):
                lower = round(log(1-(0.5/(k+1))*i)/log((0.5/(k+1))*i), 2)
                upper = round(1/lower, 2)
                x.append(lower)
                x.append(upper)
        x.append(1.00)
        return x

    def forward(self, batch_I, weights, offsets, lambda_color=None):
        """

        Args:
xuyang2233's avatar
xuyang2233 已提交
74
            batch_I (Tensor): batch of input images [batch_size x nc x I_height x I_width]
xuyang2233's avatar
add pr  
xuyang2233 已提交
75 76 77 78 79 80
            weights:
            offsets: the predicted offset by AIN, a scalar
            lambda_color: the learnable update gate \alpha in Equa. (5) as
                          g(x) = (1 - \alpha) \odot x + \alpha \odot x_{offsets}

        Returns:
xuyang2233's avatar
xuyang2233 已提交
81
            Tensor: transformed images by SPN as Equa. (4) in Ref. [1]
xuyang2233's avatar
add pr  
xuyang2233 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
                        [batch_size x I_channel_num x I_r_height x I_r_width]

        """
        batch_I = (batch_I + 1) * 0.5
        if offsets is not None:
            batch_I = batch_I*(1-lambda_color) + offsets*lambda_color
        batch_weight_params = paddle.unsqueeze(paddle.unsqueeze(weights, -1), -1)
        batch_I_power = paddle.stack([batch_I.pow(p) for p in self.power_list], axis=1)

        batch_weight_sum = paddle.sum(batch_I_power * batch_weight_params, axis=1)
        batch_weight_sum = self.bn(batch_weight_sum)
        batch_weight_sum = self.sigmoid(batch_weight_sum)
        batch_weight_sum = batch_weight_sum * 2 - 1
        return batch_weight_sum

class GA_SPIN_Transformer(nn.Layer):
    """
    Geometric-Absorbed SPIN Transformation (GA-SPIN) proposed in Ref. [1]


    Ref: [1] SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition. AAAI-2021.
    """

    def __init__(self, in_channels=1,
                 I_r_size=(32, 100),
                 offsets=False,
                 norm_type='BN',
                 default_type=6,
                 loc_lr=1,
                 stn=True):
        """
        Args:
            in_channels (int): channel of input features,
                                set it to 1 if the grayscale images and 3 if RGB input
            I_r_size (tuple): size of rectified images (used in STN transformations)
            offsets (bool): set it to False if use SPN w.o. AIN,
                            and set it to True if use SPIN (both with SPN and AIN)
            norm_type (str): the normalization type of the module,
                            set it to 'BN' by default, 'IN' optionally
            default_type (int): the K chromatic space,
                                set it to 3/5/6 depend on the complexity of transformation intensities
            loc_lr (float): learning rate of location network
xuyang2233's avatar
xuyang2233 已提交
124
            stn (bool): whther to use stn.
xuyang2233's avatar
add pr  
xuyang2233 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

        """
        super(GA_SPIN_Transformer, self).__init__()
        self.nc = in_channels
        self.spt = True
        self.offsets = offsets
        self.stn = stn  # set to True in GA-SPIN, while set it to False in SPIN
        self.I_r_size = I_r_size
        self.out_channels = in_channels
        if norm_type == 'BN':
            norm_layer = functools.partial(nn.BatchNorm2D, use_global_stats=True)
        elif norm_type == 'IN':
            norm_layer = functools.partial(nn.InstanceNorm2D, weight_attr=False,
                                           use_global_stats=False)
        else:
            raise NotImplementedError('normalization layer [%s] is not found' % norm_type)

        if self.spt:
            self.sp_net = SP_TransformerNetwork(in_channels,
                                                default_type)
            self.spt_convnet = nn.Sequential(
                                  # 32*100
                                  nn.Conv2D(in_channels, 32, 3, 1, 1, bias_attr=False),
                                  norm_layer(32), nn.ReLU(),
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  # 16*50
                                  nn.Conv2D(32, 64, 3, 1, 1, bias_attr=False),
                                  norm_layer(64), nn.ReLU(),
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  # 8*25
                                  nn.Conv2D(64, 128, 3, 1, 1, bias_attr=False),
                                  norm_layer(128), nn.ReLU(),
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  # 4*12
            )
            self.stucture_fc1 = nn.Sequential(
                                  nn.Conv2D(128, 256, 3, 1, 1, bias_attr=False),
                                  norm_layer(256), nn.ReLU(),
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  nn.Conv2D(256, 256, 3, 1, 1, bias_attr=False),
                                  norm_layer(256), nn.ReLU(),  # 2*6
                                  nn.MaxPool2D(kernel_size=2, stride=2),
                                  nn.Conv2D(256, 512, 3, 1, 1, bias_attr=False),
                                  norm_layer(512), nn.ReLU(),  # 1*3
                                  nn.AdaptiveAvgPool2D(1),
                                  nn.Flatten(1, -1),  # batch_size x 512
                                  nn.Linear(512, 256, weight_attr=nn.initializer.Normal(0.001)),
                                  nn.BatchNorm1D(256), nn.ReLU()
                                )
            self.out_weight = 2*default_type+1
            self.spt_length = 2*default_type+1
            if offsets:
                self.out_weight += 1
            if self.stn:
                self.F = 20
                self.out_weight += self.F * 2
                self.GridGenerator = GridGenerator(self.F*2, self.F)
                
            # self.out_weight*=nc
            # Init structure_fc2 in LocalizationNetwork
            initial_bias = self.init_spin(default_type*2)
            initial_bias = initial_bias.reshape(-1)
            param_attr = ParamAttr(
                learning_rate=loc_lr,
                initializer=nn.initializer.Assign(np.zeros([256, self.out_weight])))
            bias_attr = ParamAttr(
                learning_rate=loc_lr,
                initializer=nn.initializer.Assign(initial_bias))
            self.stucture_fc2 = nn.Linear(256, self.out_weight,
                                weight_attr=param_attr,
                                bias_attr=bias_attr)
            self.sigmoid = nn.Sigmoid()

            if offsets:
                self.offset_fc1 = nn.Sequential(nn.Conv2D(128, 16,
                                                          3, 1, 1,
                                                          bias_attr=False),
                                                norm_layer(16),
                                                nn.ReLU(),)
                self.offset_fc2 = nn.Conv2D(16, in_channels,
                                            3, 1, 1)
                self.pool = nn.MaxPool2D(2, 2)

    def init_spin(self, nz):
        """
        Args:
            nz (int): number of paired \betas exponents, which means the value of K x 2

        """
        init_id = [0.00]*nz+[5.00]
        if self.offsets:
            init_id += [-5.00]
            # init_id *=3
        init = np.array(init_id)

        if self.stn:
            F = self.F
            ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
            ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
            ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
            ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
            ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
            initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
            initial_bias = initial_bias.reshape(-1)
            init = np.concatenate([init, initial_bias], axis=0)
        return init

    def forward(self, x, return_weight=False):
        """
        Args:
xuyang2233's avatar
xuyang2233 已提交
235
            x (Tensor): input image batch
xuyang2233's avatar
add pr  
xuyang2233 已提交
236 237 238 239
            return_weight (bool): set to False by default,
                                  if set to True return the predicted offsets of AIN, denoted as x_{offsets}

        Returns:
xuyang2233's avatar
xuyang2233 已提交
240
            Tensor: rectified image [batch_size x I_channel_num x I_height x I_width], the same as the input size
xuyang2233's avatar
add pr  
xuyang2233 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        """

        if self.spt:
            feat = self.spt_convnet(x)
            fc1 = self.stucture_fc1(feat)
            sp_weight_fusion = self.stucture_fc2(fc1)
            sp_weight_fusion = sp_weight_fusion.reshape([x.shape[0], self.out_weight, 1])
            if self.offsets:  # SPIN w. AIN
                lambda_color = sp_weight_fusion[:, self.spt_length, 0]
                lambda_color = self.sigmoid(lambda_color).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
                sp_weight = sp_weight_fusion[:, :self.spt_length, :]
                offsets = self.pool(self.offset_fc2(self.offset_fc1(feat)))

                assert offsets.shape[2] == 2  # 2
                assert offsets.shape[3] == 6  # 16
                offsets = self.sigmoid(offsets)  # v12

                if return_weight:
                    return offsets
                offsets = nn.functional.upsample(offsets, size=(x.shape[2], x.shape[3]), mode='bilinear')

                if self.stn:
                    batch_C_prime = sp_weight_fusion[:, (self.spt_length + 1):, :].reshape([x.shape[0], self.F, 2])
                    build_P_prime = self.GridGenerator(batch_C_prime, self.I_r_size)
                    build_P_prime_reshape = build_P_prime.reshape([build_P_prime.shape[0],
                                                                   self.I_r_size[0],
                                                                   self.I_r_size[1],
                                                                   2])

            else:  # SPIN w.o. AIN
                sp_weight = sp_weight_fusion[:, :self.spt_length, :]
                lambda_color, offsets = None, None

                if self.stn:
                    batch_C_prime = sp_weight_fusion[:, self.spt_length:, :].reshape([x.shape[0], self.F, 2])
                    build_P_prime = self.GridGenerator(batch_C_prime, self.I_r_size)
                    build_P_prime_reshape = build_P_prime.reshape([build_P_prime.shape[0],
                                                                   self.I_r_size[0],
                                                                   self.I_r_size[1],
                                                                   2])

            x = self.sp_net(x, sp_weight, offsets, lambda_color)
            if self.stn:
                x = F.grid_sample(x=x, grid=build_P_prime_reshape, padding_mode='border')
        return x