rec_multi_head.py 2.9 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
A
andyjpaddle 已提交
13
# limitations under the License. 
A
andyjpaddle 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F

from ppocr.modeling.necks.rnn import Im2Seq, EncoderWithRNN, EncoderWithFC, SequenceEncoder, EncoderWithSVTR
from .rec_ctc_head import CTCHead
from .rec_sar_head import SARHead


class MultiHead(nn.Layer):
    def __init__(self, in_channels, out_channels_list, **kwargs):
        super().__init__()
        self.head_list = kwargs.pop('head_list')
        self.gtc_head = 'sar'
        assert len(self.head_list) >= 2
        for idx, head_name in enumerate(self.head_list):
            name = list(head_name)[0]
            if name == 'SARHead':
                # sar head
                sar_args = self.head_list[idx][name]
                self.sar_head = eval(name)(in_channels=in_channels, \
                    out_channels=out_channels_list['SARLabelDecode'], **sar_args)
            elif name == 'CTCHead':
                # ctc neck
                self.encoder_reshape = Im2Seq(in_channels)
                neck_args = self.head_list[idx][name]['Neck']
                encoder_type = neck_args.pop('name')
                self.encoder = encoder_type
                self.ctc_encoder = SequenceEncoder(in_channels=in_channels, \
                    encoder_type=encoder_type, **neck_args)
                # ctc head
                head_args = self.head_list[idx][name]['Head']
                self.ctc_head = eval(name)(in_channels=self.ctc_encoder.out_channels, \
                    out_channels=out_channels_list['CTCLabelDecode'], **head_args)
            else:
                raise NotImplementedError(
                    '{} is not supported in MultiHead yet'.format(name))

    def forward(self, x, targets=None):
        ctc_encoder = self.ctc_encoder(x)
        ctc_out = self.ctc_head(ctc_encoder, targets)
        head_out = dict()
        head_out['ctc'] = ctc_out
        head_out['ctc_neck'] = ctc_encoder
        # eval mode
        if not self.training:
            return ctc_out
        if self.gtc_head == 'sar':
            sar_out = self.sar_head(x, targets[1:])
            head_out['sar'] = sar_out
            return head_out
        else:
            return head_out