utility.py 21.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

L
LDOUBLEV 已提交
27

28 29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
30 31


W
WenmuZhou 已提交
32
def init_args():
L
LDOUBLEV 已提交
33
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
34
    # params for prediction engine
L
LDOUBLEV 已提交
35 36 37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
38
    parser.add_argument("--min_subgraph_size", type=int, default=10)
L
LDOUBLEV 已提交
39
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
40
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
41

W
WenmuZhou 已提交
42
    # params for text detector
L
LDOUBLEV 已提交
43 44 45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
46 47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
48

W
WenmuZhou 已提交
49
    # DB parmas
L
LDOUBLEV 已提交
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
51 52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
53
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
54
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
56
    # EAST parmas
L
LDOUBLEV 已提交
57 58 59 60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
61
    # SAST parmas
L
licx 已提交
62 63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
64
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
65

W
WenmuZhou 已提交
66
    # params for text recognizer
L
LDOUBLEV 已提交
67 68
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
69 70
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
L
LDOUBLEV 已提交
71
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
72
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
73 74 75 76
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
77 78
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
79
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
80
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
81

J
Jethong 已提交
82 83 84 85 86 87 88 89 90
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
91
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
92
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
littletomatodonkey's avatar
littletomatodonkey 已提交
93
    parser.add_argument("--e2e_pgnet_polygon", type=str2bool, default=True)
J
Jethong 已提交
94
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
95

W
WenmuZhou 已提交
96 97 98 99 100
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
101
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
102 103 104
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
105
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
106
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
107
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
108

L
LDOUBLEV 已提交
109
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
110
    parser.add_argument("--use_mp", type=str2bool, default=False)
111 112
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
113

littletomatodonkey's avatar
littletomatodonkey 已提交
114
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
115
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
116

W
WenmuZhou 已提交
117
    parser.add_argument("--show_log", type=str2bool, default=True)
W
WenmuZhou 已提交
118
    return parser
W
WenmuZhou 已提交
119

120

121
def parse_args():
W
WenmuZhou 已提交
122
    parser = init_args()
L
LDOUBLEV 已提交
123 124 125
    return parser.parse_args()


W
WenmuZhou 已提交
126 127 128 129 130
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
131
    elif mode == 'rec':
W
WenmuZhou 已提交
132
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
133 134
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
135 136
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
137 138 139 140

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
141 142
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
143
    if not os.path.exists(model_file_path):
L
LDOUBLEV 已提交
144
        raise ValueError("not find model file path {}".format(model_file_path))
W
WenmuZhou 已提交
145
    if not os.path.exists(params_file_path):
L
LDOUBLEV 已提交
146 147
        raise ValueError("not find params file path {}".format(
            params_file_path))
W
WenmuZhou 已提交
148

W
WenmuZhou 已提交
149
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
150

L
LDOUBLEV 已提交
151 152 153 154 155 156 157 158 159 160
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

W
WenmuZhou 已提交
161 162
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
163 164
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
D
Double_V 已提交
165
                precision_mode=precision,
L
LDOUBLEV 已提交
166
                max_batch_size=args.max_batch_size,
L
LDOUBLEV 已提交
167 168
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
L
LDOUBLEV 已提交
169
        if mode == "det":
L
LDOUBLEV 已提交
170 171
            min_input_shape = {
                "x": [1, 3, 50, 50],
F
fengshuai03 已提交
172 173
                "conv2d_92.tmp_0": [1, 120, 20, 20],
                "conv2d_91.tmp_0": [1, 24, 10, 10],
L
LDOUBLEV 已提交
174
                "conv2d_59.tmp_0": [1, 96, 20, 20],
F
fengshuai03 已提交
175 176 177 178 179 180
                "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                "conv2d_124.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
L
LDOUBLEV 已提交
181
                "elementwise_add_7": [1, 56, 2, 2],
F
fengshuai03 已提交
182
                "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
L
LDOUBLEV 已提交
183 184 185
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
F
fengshuai03 已提交
186 187
                "conv2d_92.tmp_0": [1, 120, 400, 400],
                "conv2d_91.tmp_0": [1, 24, 200, 200],
L
LDOUBLEV 已提交
188
                "conv2d_59.tmp_0": [1, 96, 400, 400],
F
fengshuai03 已提交
189
                "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
L
LDOUBLEV 已提交
190
                "conv2d_124.tmp_0": [1, 256, 400, 400],
F
fengshuai03 已提交
191 192 193 194
                "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
L
LDOUBLEV 已提交
195
                "elementwise_add_7": [1, 56, 400, 400],
F
fengshuai03 已提交
196
                "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
L
LDOUBLEV 已提交
197 198 199
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
F
fengshuai03 已提交
200 201
                "conv2d_92.tmp_0": [1, 120, 160, 160],
                "conv2d_91.tmp_0": [1, 24, 80, 80],
L
LDOUBLEV 已提交
202
                "conv2d_59.tmp_0": [1, 96, 160, 160],
F
fengshuai03 已提交
203 204
                "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
L
LDOUBLEV 已提交
205
                "conv2d_124.tmp_0": [1, 256, 160, 160],
F
fengshuai03 已提交
206 207 208
                "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
L
LDOUBLEV 已提交
209
                "elementwise_add_7": [1, 56, 40, 40],
F
fengshuai03 已提交
210
                "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
L
LDOUBLEV 已提交
211
            }
F
fengshuai03 已提交
212
            min_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey 已提交
213 214 215 216
                "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
F
fengshuai03 已提交
217 218
            }
            max_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey 已提交
219 220 221 222
                "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
F
fengshuai03 已提交
223 224
            }
            opt_pact_shape = {
littletomatodonkey's avatar
littletomatodonkey 已提交
225 226 227 228
                "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
F
fengshuai03 已提交
229 230 231 232
            }
            min_input_shape.update(min_pact_shape)
            max_input_shape.update(max_pact_shape)
            opt_input_shape.update(opt_pact_shape)
L
LDOUBLEV 已提交
233
        elif mode == "rec":
L
LDOUBLEV 已提交
234
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
L
LDOUBLEV 已提交
235
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
L
LDOUBLEV 已提交
236
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
L
LDOUBLEV 已提交
237
        elif mode == "cls":
L
LDOUBLEV 已提交
238
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
L
LDOUBLEV 已提交
239
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
L
LDOUBLEV 已提交
240
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
241 242 243 244
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
245 246 247
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
248 249
    else:
        config.disable_gpu()
L
LDOUBLEV 已提交
250 251 252
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
253
            # default cpu threads as 10
L
LDOUBLEV 已提交
254
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
255 256 257 258 259
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

L
LDOUBLEV 已提交
260 261
    # enable memory optim
    config.enable_memory_optim()
L
LDOUBLEV 已提交
262
    #config.disable_glog_info()
W
WenmuZhou 已提交
263

W
WenmuZhou 已提交
264
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
W
WenmuZhou 已提交
265
    if mode == 'table':
W
WenmuZhou 已提交
266
        config.delete_pass("fc_fuse_pass")  # not supported for table
W
WenmuZhou 已提交
267
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
268
    config.switch_ir_optim(True)
269

W
WenmuZhou 已提交
270 271
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
272 273
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
274
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
275 276 277
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
278
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
279
        output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
280
    return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
281 282


J
Jethong 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
299
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
300 301 302 303
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
304
    return src_im
L
LDOUBLEV 已提交
305 306


L
LDOUBLEV 已提交
307 308
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
309
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
310 311 312 313 314
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
315 316
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
317 318


W
WenmuZhou 已提交
319 320 321 322 323
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
324
             font_path="./doc/fonts/simfang.ttf"):
325 326 327
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
328
        image(Image|array): RGB image
329 330 331 332
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
333
        font_path: the path of font which is used to draw text
334 335 336
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
337 338
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
339 340 341 342
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
343
            continue
W
WenmuZhou 已提交
344
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
345
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
346
    if txts is not None:
L
LDOUBLEV 已提交
347
        img = np.array(resize_img(image, input_size=600))
348
        txt_img = text_visual(
W
WenmuZhou 已提交
349 350 351 352 353 354
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
355
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
356 357
        return img
    return image
358 359


W
WenmuZhou 已提交
360 361 362 363 364 365
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
366 367 368
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
369 370

    import random
L
LDOUBLEV 已提交
371

372 373 374
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
375 376 377
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
378 379
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
380
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
381 382 383 384 385 386 387 388 389 390
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
391 392
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
393
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
394 395 396
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
397 398
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
399 400 401
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
402
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
403 404
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
405 406 407 408
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
409 410 411
    return np.array(img_show)


412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
436 437 438 439 440 441
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
442 443 444 445 446 447 448
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
449
        font_path: the path of font which is used to draw text
450 451 452 453 454 455 456 457 458
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
459 460
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
461
        return blank_img, draw_txt
L
LDOUBLEV 已提交
462

463 464 465 466
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
467
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
468 469 470

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
471
    count, index = 1, 0
472 473
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
474
        if scores[idx] < threshold or math.isnan(scores[idx]):
475 476 477 478 479 480 481 482 483 484 485
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
486
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
487 488 489 490 491
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
492
            count += 1
493 494 495
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
496
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
497
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
498
        # whether add new blank img or not
L
LDOUBLEV 已提交
499
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
500 501 502
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
503
        count += 1
504 505 506 507 508 509
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
510 511


D
dyning 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


L
LDOUBLEV 已提交
566
if __name__ == '__main__':
L
LDOUBLEV 已提交
567
    pass