recognition_en.md 12.6 KB
Newer Older
X
xxxpsyduck 已提交
1
## TEXT RECOGNITION
K
Khanh Tran 已提交
2

X
xxxpsyduck 已提交
3
### DATA PREPARATION
K
Khanh Tran 已提交
4 5 6 7 8 9 10 11 12


PaddleOCR supports two data formats: `LMDB` is used to train public data and evaluation algorithms; `general data` is used to train your own data:

Please organize the dataset as follows:

The default storage path for training data is `PaddleOCR/train_data`, if you already have a dataset on your disk, just create a soft link to the dataset directory:

```
13
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
K
Khanh Tran 已提交
14 15 16 17 18 19 20
```


* Dataset download

If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads). Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),download the lmdb format dataset required for benchmark

T
tink2123 已提交
21 22
If you want to reproduce the paper indicators of SRN, you need to download offline [augmented data](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA), extraction code: y3ry. The augmented data is obtained by rotation and perturbation of mjsynth and synthtext. Please unzip the data to {your_path}/PaddleOCR/train_data/data_lmdb_Release/training/path.

K
Khanh Tran 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
* Use your own dataset:

If you want to use your own data for training, please refer to the following to organize your data.

- Training set

First put the training images in the same folder (train_images), and use a txt file (rec_gt_train.txt) to store the image path and label.

* Note: by default, the image path and image label are split with \t, if you use other methods to split, it will cause training error

```
" Image file name           Image annotation "

train_data/train_0001.jpg   简单可依赖
train_data/train_0002.jpg   用科技让复杂的世界更简单
```
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:

```
# Training set label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# Test Set Label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```

The final training set should have the following file structure:

```
|-train_data
    |-ic15_data
        |- rec_gt_train.txt
        |- train
            |- word_001.png
            |- word_002.jpg
            |- word_003.jpg
            | ...
```

- Test set

Similar to the training set, the test set also needs to be provided a folder containing all images (test) and a rec_gt_test.txt. The structure of the test set is as follows:

```
|-train_data
    |-ic15_data
        |- rec_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```

- Dictionary

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

littletomatodonkey's avatar
littletomatodonkey 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/french_dict.txt` is a French dictionary with 118 characters

`ppocr/utils/japan_dict.txt` is a French dictionary with 4399 characters

`ppocr/utils/korean_dict.txt` is a French dictionary with 3636 characters

`ppocr/utils/german_dict.txt` is a French dictionary with 131 characters

You can use it on demand.

The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
If you like, you can submit the dictionary file to [utils](../../ppocr/utils) and we will thank you in the Repo.
K
Khanh Tran 已提交
109 110 111 112


To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`.

T
tink2123 已提交
113 114 115 116 117 118 119 120 121 122
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

- Add space category

If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `true`.

**Note: use_space_char only takes effect when character_type=ch**

X
xxxpsyduck 已提交
123
### TRAINING
K
Khanh Tran 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar
# Decompress model parameters
cd pretrain_models
tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
```

Start training:

```
# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=0,1,2,3
T
tink2123 已提交
143 144
# Training icdar15 English data and saving the log as train_rec.log
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
K
Khanh Tran 已提交
145 146
```

T
tink2123 已提交
147 148 149 150 151 152 153 154 155 156 157
- Data Augmentation

PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse.

Each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: [img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)


- Training

K
Khanh Tran 已提交
158 159 160 161 162 163 164 165 166
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
littletomatodonkey's avatar
littletomatodonkey 已提交
167 168
| [rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_common_train_v1.1.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
K
Khanh Tran 已提交
169
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
littletomatodonkey's avatar
littletomatodonkey 已提交
170
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
K
Khanh Tran 已提交
171 172 173 174 175 176 177 178 179 180
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_mv3_tps_bilstm_ctc.yml |  STARNet |   Mobilenet_v3 large 0.5 |  tps   |  BiLSTM |  ctc  |
| rec_mv3_tps_bilstm_attn.yml |  RARE |   Mobilenet_v3 large 0.5 |  tps   |  BiLSTM |  attention  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
| rec_r34_vd_tps_bilstm_attn.yml | RARE | Resnet34_vd | tps | BiLSTM | attention |
| rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc |

littletomatodonkey's avatar
littletomatodonkey 已提交
181 182
For training Chinese data, it is recommended to use
训练中文数据,推荐使用[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
K
Khanh Tran 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
co
Take `rec_mv3_none_none_ctc.yml` as an example:
```
Global:
  ...
  # Modify image_shape to fit long text
  image_shape: [3, 32, 320]
  ...
  # Modify character type
  character_type: ch
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
  ...
  # Modify reader type
  reader_yml: ./configs/rec/rec_chinese_reader.yml
198 199 200
  # Whether to use data augmentation
  distort: true
  # Whether to recognize spaces
T
tink2123 已提交
201
  use_space_char: true
K
Khanh Tran 已提交
202 203 204
  ...

...
205 206 207 208 209 210 211 212 213 214

Optimizer:
  ...
  # Add learning rate decay strategy
  decay:
    function: cosine_decay
    # Each epoch contains iter number
    step_each_epoch: 20
    # Total epoch number
    total_epoch: 1000
K
Khanh Tran 已提交
215 216 217
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

T
tink2123 已提交
218
-Minor language
K
Khanh Tran 已提交
219

T
tink2123 已提交
220 221 222 223 224 225 226 227 228 229
PaddleOCR also provides multi-language. The configuration file in `configs/rec/multi_languages` provides multi-language configuration files. Currently, the multi-language algorithms supported by PaddleOCR are:

| Configuration file | Algorithm name | backbone | trans | seq | pred | language |
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English |
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French |
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German |
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese |
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean |

littletomatodonkey's avatar
littletomatodonkey 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded on [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi.

If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
  # Add a custom dictionary, if you modify the dictionary
  # please point the path to the new dictionary
  character_dict_path: ./ppocr/utils/french_dict.txt
  # Add data augmentation during training
  distort: true
  # Identify spaces
  use_space_char: true
  ...
  # Modify reader type
  reader_yml: ./configs/rec/multi_languages/rec_french_reader.yml
  ...
...
```

K
Khanh Tran 已提交
253

X
xxxpsyduck 已提交
254
### EVALUATION
K
Khanh Tran 已提交
255 256 257 258 259 260

The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` setting of `label_file_path` in EvalReader.

```
export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested
littletomatodonkey's avatar
littletomatodonkey 已提交
261
python3 tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
K
Khanh Tran 已提交
262 263
```

X
xxxpsyduck 已提交
264
### PREDICTION
K
Khanh Tran 已提交
265 266 267 268 269 270 271 272 273

* Training engine prediction

Using the model trained by paddleocr, you can quickly get prediction through the following script.

The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.checkpoints`:

```
# Predict English results
littletomatodonkey's avatar
littletomatodonkey 已提交
274
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg
K
Khanh Tran 已提交
275 276 277 278
```

Input image:

279
![](../imgs_words/en/word_1.png)
K
Khanh Tran 已提交
280 281 282 283 284 285 286 287 288

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
     index: [19 24 18 23 29]
     word : joint
```

littletomatodonkey's avatar
littletomatodonkey 已提交
289
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml`, you can use the following command to predict the Chinese model:
K
Khanh Tran 已提交
290 291 292

```
# Predict Chinese results
littletomatodonkey's avatar
littletomatodonkey 已提交
293
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg
K
Khanh Tran 已提交
294 295 296 297
```

Input image:

298
![](../imgs_words/ch/word_1.jpg)
K
Khanh Tran 已提交
299 300 301 302 303 304 305 306

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
     index: [2092  177  312 2503]
     word : 韩国小馆
```