train.py 15.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
import paddle
import numpy as np
import os
import paddle.nn as nn
import paddle.distributed as dist
dist.get_world_size()
dist.init_parallel_env()

from loss import build_loss, LossDistill, DMLLoss, KLJSLoss
from optimizer import create_optimizer
from data_loader import build_dataloader
from metric import create_metric
from mv3 import MobileNetV3_large_x0_5, distillmv3_large_x0_5, build_model
from config import preprocess
import time

from paddleslim.dygraph.quant import QAT
from slim.slim_quant import PACT, quant_config
from slim.slim_fpgm import prune_model
from utils import load_model


def _mkdir_if_not_exist(path, logger):
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


def save_model(model,
               optimizer,
               model_path,
               logger,
               is_best=False,
               prefix='ppocr',
               **kwargs):
    """
    save model to the target path
    """
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
    paddle.save(model.state_dict(), model_prefix + '.pdparams')
    if type(optimizer) is list:
        paddle.save(optimizer[0].state_dict(), model_prefix + '.pdopt')
        paddle.save(optimizer[1].state_dict(), model_prefix + "_1" + '.pdopt')

    else:
        paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')

    # # save metric and config
    # with open(model_prefix + '.states', 'wb') as f:
    #     pickle.dump(kwargs, f, protocol=2)
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))


def amp_scaler(config):
    if 'AMP' in config and config['AMP']['use_amp'] is True:
        AMP_RELATED_FLAGS_SETTING = {
            'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
            'FLAGS_max_inplace_grad_add': 8,
        }
        paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
        scale_loss = config["AMP"].get("scale_loss", 1.0)
        use_dynamic_loss_scaling = config["AMP"].get("use_dynamic_loss_scaling",
                                                     False)
        scaler = paddle.amp.GradScaler(
            init_loss_scaling=scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)
        return scaler
    else:
        return None


def set_seed(seed):
    paddle.seed(seed)
    np.random.seed(seed)


def train(config, scaler=None):
    EPOCH = config['epoch']
    topk = config['topk']

    batch_size = config['TRAIN']['batch_size']
    num_workers = config['TRAIN']['num_workers']
    train_loader = build_dataloader(
        'train', batch_size=batch_size, num_workers=num_workers)

    # build metric
    metric_func = create_metric

    # build model
    # model = MobileNetV3_large_x0_5(class_dim=100)
    model = build_model(config)

    # build_optimizer 
    optimizer, lr_scheduler = create_optimizer(
        config, parameter_list=model.parameters())

    # load model
    pre_best_model_dict = load_model(config, model, optimizer)
    if len(pre_best_model_dict) > 0:
        pre_str = 'The metric of loaded metric as follows {}'.format(', '.join(
            ['{}: {}'.format(k, v) for k, v in pre_best_model_dict.items()]))
        logger.info(pre_str)

    # about slim prune and quant
    if "quant_train" in config and config['quant_train'] is True:
        quanter = QAT(config=quant_config, act_preprocess=PACT)
        quanter.quantize(model)
    elif "prune_train" in config and config['prune_train'] is True:
        model = prune_model(model, [1, 3, 32, 32], 0.1)
    else:
        pass

    # distribution
    model.train()
    model = paddle.DataParallel(model)
    # build loss function
    loss_func = build_loss(config)

    data_num = len(train_loader)

    best_acc = {}
    for epoch in range(EPOCH):
        st = time.time()
        for idx, data in enumerate(train_loader):
            img_batch, label = data
            img_batch = paddle.transpose(img_batch, [0, 3, 1, 2])
            label = paddle.unsqueeze(label, -1)

            if scaler is not None:
                with paddle.amp.auto_cast():
                    outs = model(img_batch)
            else:
                outs = model(img_batch)

            # cal metric 
            acc = metric_func(outs, label)

            # cal loss
            avg_loss = loss_func(outs, label)

            if scaler is None:
                # backward
                avg_loss.backward()
                optimizer.step()
                optimizer.clear_grad()
            else:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)

            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()

            if idx % 10 == 0:
                et = time.time()
                strs = f"epoch: [{epoch}/{EPOCH}], iter: [{idx}/{data_num}], "
                strs += f"loss: {avg_loss.numpy()[0]}"
                strs += f", acc_topk1: {acc['top1'].numpy()[0]}, acc_top5: {acc['top5'].numpy()[0]}"
                strs += f", batch_time: {round(et-st, 4)} s"
                logger.info(strs)
                st = time.time()

        if epoch % 10 == 0:
            acc = eval(config, model)
            if len(best_acc) < 1 or acc['top5'].numpy()[0] > best_acc['top5']:
                best_acc = acc
                best_acc['epoch'] = epoch
                is_best = True
            else:
                is_best = False
            logger.info(
                f"The best acc: acc_topk1: {best_acc['top1'].numpy()[0]}, acc_top5: {best_acc['top5'].numpy()[0]}, best_epoch: {best_acc['epoch']}"
            )
            save_model(
                model,
                optimizer,
                config['save_model_dir'],
                logger,
                is_best,
                prefix="cls")


def train_distill(config, scaler=None):
    EPOCH = config['epoch']
    topk = config['topk']

    batch_size = config['TRAIN']['batch_size']
    num_workers = config['TRAIN']['num_workers']
    train_loader = build_dataloader(
        'train', batch_size=batch_size, num_workers=num_workers)

    # build metric
    metric_func = create_metric

    # model = distillmv3_large_x0_5(class_dim=100)
    model = build_model(config)

    # pact quant train
    if "quant_train" in config and config['quant_train'] is True:
        quanter = QAT(config=quant_config, act_preprocess=PACT)
        quanter.quantize(model)
    elif "prune_train" in config and config['prune_train'] is True:
        model = prune_model(model, [1, 3, 32, 32], 0.1)
    else:
        pass

    # build_optimizer 
    optimizer, lr_scheduler = create_optimizer(
        config, parameter_list=model.parameters())

    # load model
    pre_best_model_dict = load_model(config, model, optimizer)
    if len(pre_best_model_dict) > 0:
        pre_str = 'The metric of loaded metric as follows {}'.format(', '.join(
            ['{}: {}'.format(k, v) for k, v in pre_best_model_dict.items()]))
        logger.info(pre_str)

    model.train()
    model = paddle.DataParallel(model)

    # build loss function
    loss_func_distill = LossDistill(model_name_list=['student', 'student1'])
    loss_func_dml = DMLLoss(model_name_pairs=['student', 'student1'])
    loss_func_js = KLJSLoss(mode='js')

    data_num = len(train_loader)

    best_acc = {}
    for epoch in range(EPOCH):
        st = time.time()
        for idx, data in enumerate(train_loader):
            img_batch, label = data
            img_batch = paddle.transpose(img_batch, [0, 3, 1, 2])
            label = paddle.unsqueeze(label, -1)
            if scaler is not None:
                with paddle.amp.auto_cast():
                    outs = model(img_batch)
            else:
                outs = model(img_batch)

            # cal metric 
            acc = metric_func(outs['student'], label)

            # cal loss
            avg_loss = loss_func_distill(outs, label)['student'] + \
                       loss_func_distill(outs, label)['student1'] + \
                       loss_func_dml(outs, label)['student_student1']

            # backward
            if scaler is None:
                avg_loss.backward()
                optimizer.step()
                optimizer.clear_grad()
            else:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)

            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()

            if idx % 10 == 0:
                et = time.time()
                strs = f"epoch: [{epoch}/{EPOCH}], iter: [{idx}/{data_num}], "
                strs += f"loss: {avg_loss.numpy()[0]}"
                strs += f", acc_topk1: {acc['top1'].numpy()[0]}, acc_top5: {acc['top5'].numpy()[0]}"
                strs += f", batch_time: {round(et-st, 4)} s"
                logger.info(strs)
                st = time.time()

        if epoch % 10 == 0:
            acc = eval(config, model._layers.student)
            if len(best_acc) < 1 or acc['top5'].numpy()[0] > best_acc['top5']:
                best_acc = acc
                best_acc['epoch'] = epoch
                is_best = True
            else:
                is_best = False
            logger.info(
                f"The best acc: acc_topk1: {best_acc['top1'].numpy()[0]}, acc_top5: {best_acc['top5'].numpy()[0]}, best_epoch: {best_acc['epoch']}"
            )

            save_model(
                model,
                optimizer,
                config['save_model_dir'],
                logger,
                is_best,
                prefix="cls_distill")


def train_distill_multiopt(config, scaler=None):
    EPOCH = config['epoch']
    topk = config['topk']

    batch_size = config['TRAIN']['batch_size']
    num_workers = config['TRAIN']['num_workers']
    train_loader = build_dataloader(
        'train', batch_size=batch_size, num_workers=num_workers)

    # build metric
    metric_func = create_metric

    # model = distillmv3_large_x0_5(class_dim=100)
    model = build_model(config)

    # build_optimizer 
    optimizer, lr_scheduler = create_optimizer(
        config, parameter_list=model.student.parameters())
    optimizer1, lr_scheduler1 = create_optimizer(
        config, parameter_list=model.student1.parameters())

    # load model
    pre_best_model_dict = load_model(config, model, optimizer)
    if len(pre_best_model_dict) > 0:
        pre_str = 'The metric of loaded metric as follows {}'.format(', '.join(
            ['{}: {}'.format(k, v) for k, v in pre_best_model_dict.items()]))
        logger.info(pre_str)

    # quant train
    if "quant_train" in config and config['quant_train'] is True:
        quanter = QAT(config=quant_config, act_preprocess=PACT)
        quanter.quantize(model)
    elif "prune_train" in config and config['prune_train'] is True:
        model = prune_model(model, [1, 3, 32, 32], 0.1)
    else:
        pass

    model.train()

    model = paddle.DataParallel(model)

    # build loss function
    loss_func_distill = LossDistill(model_name_list=['student', 'student1'])
    loss_func_dml = DMLLoss(model_name_pairs=['student', 'student1'])
    loss_func_js = KLJSLoss(mode='js')

    data_num = len(train_loader)
    best_acc = {}
    for epoch in range(EPOCH):
        st = time.time()
        for idx, data in enumerate(train_loader):
            img_batch, label = data
            img_batch = paddle.transpose(img_batch, [0, 3, 1, 2])
            label = paddle.unsqueeze(label, -1)

            if scaler is not None:
                with paddle.amp.auto_cast():
                    outs = model(img_batch)
            else:
                outs = model(img_batch)

            # cal metric 
            acc = metric_func(outs['student'], label)

            # cal loss
            avg_loss = loss_func_distill(outs,
                                         label)['student'] + loss_func_dml(
                                             outs, label)['student_student1']
            avg_loss1 = loss_func_distill(outs,
                                          label)['student1'] + loss_func_dml(
                                              outs, label)['student_student1']

            if scaler is None:
                # backward
                avg_loss.backward(retain_graph=True)
                optimizer.step()
                optimizer.clear_grad()

                avg_loss1.backward()
                optimizer1.step()
                optimizer1.clear_grad()
            else:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)

                scaled_avg_loss = scaler.scale(avg_loss1)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer1, scaled_avg_loss)

            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
            if not isinstance(lr_scheduler1, float):
                lr_scheduler1.step()

            if idx % 10 == 0:
                et = time.time()
                strs = f"epoch: [{epoch}/{EPOCH}], iter: [{idx}/{data_num}], "
                strs += f"loss: {avg_loss.numpy()[0]}, loss1: {avg_loss1.numpy()[0]}"
                strs += f", acc_topk1: {acc['top1'].numpy()[0]}, acc_top5: {acc['top5'].numpy()[0]}"
                strs += f", batch_time: {round(et-st, 4)} s"
                logger.info(strs)
                st = time.time()

        if epoch % 10 == 0:
            acc = eval(config, model._layers.student)
            if len(best_acc) < 1 or acc['top5'].numpy()[0] > best_acc['top5']:
                best_acc = acc
                best_acc['epoch'] = epoch
                is_best = True
            else:
                is_best = False
            logger.info(
                f"The best acc: acc_topk1: {best_acc['top1'].numpy()[0]}, acc_top5: {best_acc['top5'].numpy()[0]}, best_epoch: {best_acc['epoch']}"
            )
            save_model(
                model, [optimizer, optimizer1],
                config['save_model_dir'],
                logger,
                is_best,
                prefix="cls_distill_multiopt")


def eval(config, model):
    batch_size = config['VALID']['batch_size']
    num_workers = config['VALID']['num_workers']
    valid_loader = build_dataloader(
        'test', batch_size=batch_size, num_workers=num_workers)

    # build metric
    metric_func = create_metric

    outs = []
    labels = []
    for idx, data in enumerate(valid_loader):
        img_batch, label = data
        img_batch = paddle.transpose(img_batch, [0, 3, 1, 2])
        label = paddle.unsqueeze(label, -1)
        out = model(img_batch)

        outs.append(out)
        labels.append(label)

    outs = paddle.concat(outs, axis=0)
    labels = paddle.concat(labels, axis=0)
    acc = metric_func(outs, labels)

    strs = f"The metric are as follows: acc_topk1: {acc['top1'].numpy()[0]}, acc_top5: {acc['top5'].numpy()[0]}"
    logger.info(strs)
    return acc


if __name__ == "__main__":

    config, logger = preprocess(is_train=False)

    # AMP scaler
    scaler = amp_scaler(config)

    model_type = config['model_type']

    if model_type == "cls":
        train(config)
    elif model_type == "cls_distill":
        train_distill(config)
    elif model_type == "cls_distill_multiopt":
        train_distill_multiopt(config)
    else:
        raise ValueError("model_type should be one of ['']")