infer_re.py 5.5 KB
Newer Older
文幕地方's avatar
add re  
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import random

import cv2
import matplotlib.pyplot as plt
import numpy as np
import paddle

from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction

from xfun import XFUNDataset
L
reset  
LDOUBLEV 已提交
18
from vqa_utils import parse_args, get_bio_label_maps, draw_re_results
文幕地方's avatar
add re  
文幕地方 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
from data_collator import DataCollator

from ppocr.utils.logging import get_logger


def infer(args):
    os.makedirs(args.output_dir, exist_ok=True)
    logger = get_logger()
    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)

    model = LayoutXLMForRelationExtraction.from_pretrained(
        args.model_name_or_path)

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=8,
        shuffle=False,
        collate_fn=DataCollator())

    # 读取gt的oct数据
    ocr_info_list = load_ocr(args.eval_data_dir, args.eval_label_path)

    for idx, batch in enumerate(eval_dataloader):
        ocr_info = ocr_info_list[idx]
        image_path = ocr_info['image_path']
        ocr_info = ocr_info['ocr_info']

Z
zhoujun 已提交
63 64 65 66 67 68 69 70 71
        save_img_path = os.path.join(
            args.output_dir,
            os.path.splitext(os.path.basename(image_path))[0] + "_re.jpg")
        logger.info("[Infer] process: {}/{}, save result to {}".format(
            idx, len(eval_dataloader), save_img_path))
        with paddle.no_grad():
            outputs = model(**batch)
        pred_relations = outputs['pred_relations']

文幕地方's avatar
add re  
文幕地方 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        # 根据entity里的信息,做token解码后去过滤不要的ocr_info
        ocr_info = filter_bg_by_txt(ocr_info, batch, tokenizer)

        # 进行 relations 到 ocr信息的转换
        result = []
        used_tail_id = []
        for relations in pred_relations:
            for relation in relations:
                if relation['tail_id'] in used_tail_id:
                    continue
                if relation['head_id'] not in ocr_info or relation[
                        'tail_id'] not in ocr_info:
                    continue
                used_tail_id.append(relation['tail_id'])
                ocr_info_head = ocr_info[relation['head_id']]
                ocr_info_tail = ocr_info[relation['tail_id']]
                result.append((ocr_info_head, ocr_info_tail))

        img = cv2.imread(image_path)
        img_show = draw_re_results(img, result)
Z
zhoujun 已提交
92
        cv2.imwrite(save_img_path, img_show)
文幕地方's avatar
add re  
文幕地方 已提交
93 94 95 96 97


def load_ocr(img_folder, json_path):
    import json
    d = []
文幕地方's avatar
文幕地方 已提交
98
    with open(json_path, "r", encoding='utf-8') as fin:
文幕地方's avatar
add re  
文幕地方 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        lines = fin.readlines()
        for line in lines:
            image_name, info_str = line.split("\t")
            info_dict = json.loads(info_str)
            info_dict['image_path'] = os.path.join(img_folder, image_name)
            d.append(info_dict)
    return d


def filter_bg_by_txt(ocr_info, batch, tokenizer):
    entities = batch['entities'][0]
    input_ids = batch['input_ids'][0]

    new_info_dict = {}
    for i in range(len(entities['start'])):
        entitie_head = entities['start'][i]
        entitie_tail = entities['end'][i]
        word_input_ids = input_ids[entitie_head:entitie_tail].numpy().tolist()
        txt = tokenizer.convert_ids_to_tokens(word_input_ids)
        txt = tokenizer.convert_tokens_to_string(txt)

        for i, info in enumerate(ocr_info):
            if info['text'] == txt:
                new_info_dict[i] = info
    return new_info_dict


def post_process(pred_relations, ocr_info, img):
    result = []
    for relations in pred_relations:
        for relation in relations:
            ocr_info_head = ocr_info[relation['head_id']]
            ocr_info_tail = ocr_info[relation['tail_id']]
            result.append((ocr_info_head, ocr_info_tail))
    return result


def draw_re(result, image_path, output_folder):
    img = cv2.imread(image_path)

    from matplotlib import pyplot as plt
    for ocr_info_head, ocr_info_tail in result:
        cv2.rectangle(
            img,
            tuple(ocr_info_head['bbox'][:2]),
            tuple(ocr_info_head['bbox'][2:]), (255, 0, 0),
            thickness=2)
        cv2.rectangle(
            img,
            tuple(ocr_info_tail['bbox'][:2]),
            tuple(ocr_info_tail['bbox'][2:]), (0, 0, 255),
            thickness=2)
        center_p1 = [(ocr_info_head['bbox'][0] + ocr_info_head['bbox'][2]) // 2,
                     (ocr_info_head['bbox'][1] + ocr_info_head['bbox'][3]) // 2]
        center_p2 = [(ocr_info_tail['bbox'][0] + ocr_info_tail['bbox'][2]) // 2,
                     (ocr_info_tail['bbox'][1] + ocr_info_tail['bbox'][3]) // 2]
        cv2.line(
            img, tuple(center_p1), tuple(center_p2), (0, 255, 0), thickness=2)
    plt.imshow(img)
    plt.savefig(
        os.path.join(output_folder, os.path.basename(image_path)), dpi=600)
    # plt.show()


if __name__ == "__main__":
    args = parse_args()
    infer(args)