# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest from test_lstm_op import lstm, ACTIVATION def fc(x, w, b): return np.dot(x, w) + b def fusion_lstm( x, # T x M lod, # 1 x N wx=None, # M x 4D bx=None, # 1 x 4D h0=None, # N x D c0=None, # N x D w_h=None, # D x 4D w_b=None, # 1 x 4D w_c=None, # 1 x 3D is_reverse=False, act_gate=None, act_cell=None, act_cand=None): return lstm( fc(x, wx, bx), lod, h0, c0, w_h, w_b, w_c, is_reverse, act_gate, act_cell, act_cand) class TestLstmOp(OpTest): def set_argument(self): self.lod = [[2, 3, 2]] def setUp(self): self.op_type = 'fusion_lstm' self.lod = [[2, 3, 2]] self.M = 8 self.D = 16 self.has_initial_state = False self.is_reverse = False self.act_gate = 'sigmoid' self.act_cell = 'tanh' self.act_cand = 'tanh' self.use_peepholes = False self.set_argument() T = sum(self.lod[0]) bs = len(self.lod[0]) x = np.random.normal(size=(T, self.M)).astype('float64') if self.has_initial_state: h0 = np.random.normal(size=(bs, self.D)).astype('float64') c0 = np.random.normal(size=(bs, self.D)).astype('float64') else: h0 = np.zeros((bs, self.D)).astype('float64') c0 = np.zeros((bs, self.D)).astype('float64') wh = np.random.normal(size=(self.D, 4 * self.D)).astype('float64') if self.use_peepholes: b = np.random.normal(size=(1, 7 * self.D)).astype('float64') else: b = np.random.normal(size=(1, 4 * self.D)).astype('float64') w_b = np.copy(b[:, 0:4 * self.D]) w_c = b[:, 4 * self.D:] if self.use_peepholes else None # this is the weight of fc wx = np.random.normal(size=(self.M, 4 * self.D)).astype('float64') # this is the bias of fc # and it should be manually added into the bias of this fusion LSTM bx = np.random.normal(size=(1, 4 * self.D)).astype('float64') b[0, 0:4 * self.D] += bx[0, :] h, c = fusion_lstm(x, self.lod, wx, bx, h0, c0, wh, w_b, w_c, self.is_reverse, ACTIVATION[self.act_gate], ACTIVATION[self.act_cell], ACTIVATION[self.act_cand]) self.inputs = { 'X': (x, self.lod), 'WeightX': wx, 'WeightH': wh, 'Bias': b } if self.has_initial_state: self.inputs['H0'] = h0 self.inputs['C0'] = c0 self.outputs = { 'Hidden': (h, self.lod), 'Cell': (c, self.lod), } self.attrs = { 'use_peepholes': self.use_peepholes, 'is_reverse': self.is_reverse, 'gate_activation': self.act_gate, 'cell_activation': self.act_cell, 'candidate_activation': self.act_cand } def test_check_output(self): self.check_output(atol=1e-8) class TestLstmOpInitReverse(TestLstmOp): def set_argument(self): self.has_initial_state = True self.is_reverse = True class TestLstmOpMD1(TestLstmOp): def set_argument(self): self.M = 36 self.D = 8 class TestLstmOpMD2(TestLstmOp): def set_argument(self): self.M = 8 self.D = 8 class TestLstmOpMD3(TestLstmOp): def set_argument(self): self.M = 15 self.D = 3 class TestLstmOpBS1(TestLstmOp): def set_argument(self): self.lod = [[3]] self.D = 16 if __name__ == '__main__': unittest.main()