# PicoDet ## Introduction We developed a series of mobile models, which named `PicoDet`. Optimizing method of we use: - [Generalized Focal Loss V2](https://arxiv.org/pdf/2011.12885.pdf) - Lr Cosine Decay ## Model Zoo ### PicoDet-S | Backbone | Input size | images/GPU | lr schedule |Box AP | FLOPS | Inference Time | download | config | | :------------------------ | :-------: | :-------: | :-----------: | :---: | :-----: | :-----: | :-------------------------------------------------: | :-----: | | ShuffleNetv2-1x | 320*320 | 128 | 280e | 21.9 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_s_shufflenetv2_320_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_shufflenetv2_320_coco.yml) | | MobileNetv3-large-0.5x | 320*320 | 128 | 280e | 20.4 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_s_mbv3_320_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_mbv3_320_coco.yml) | | ShuffleNetv2-1x | 416*416 | 96 | 280e | 24.0 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_s_shufflenetv2_416_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_shufflenetv2_416_coco.yml) | | MobileNetv3-large-0.5x | 416*416 | 96 | 280e | 23.3 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_s_mbv3_416_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_mbv3_416_coco.yml) | ### PicoDet-M | Backbone | Input size | images/GPU | lr schedule |Box AP | FLOPS | Inference Time | download | config | | :------------------------ | :-------: | :-------: | :-----------: | :---: | :-----: | :-----: | :-------------------------------------------------: | :-----: | | ShuffleNetv2-1.5x | 320*320 | 128 | 280e | 24.9 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_m_shufflenetv2_320_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_shufflenetv2_320_coco.yml) | | MobileNetv3-large-1x | 320*320 | 128 | 280e | 26.4 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_m_mbv3_320_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_mbv3_320_coco.yml) | | ShuffleNetv2-1.5x | 416*416 | 128 | 280e | 27.4 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_m_shufflenetv2_416_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_shufflenetv2_416_coco.yml) | | MobileNetv3-large-1x | 416*416 | 128 | 280e | 29.2 | -- | -- | [download](https://paddledet.bj.bcebos.com/models/picodet_m_mbv3_416_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_mbv3_416_coco.yml) | **Notes:** - PicoDet inference speed is tested on Kirin 980 with 4 threads by arm8 and with FP16. - PicoDet is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`. - PicoDet used 4 GPUs for training and mini-batch size as 128 or 96 on each GPU. ## Citations ``` @article{li2020gflv2, title={Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection}, author={Li, Xiang and Wang, Wenhai and Hu, Xiaolin and Li, Jun and Tang, Jinhui and Yang, Jian}, journal={arXiv preprint arXiv:2011.12885}, year={2020} } ```