# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from numbers import Integral from paddle import fluid from paddle.fluid.param_attr import ParamAttr from paddle.fluid.regularizer import L2Decay from ppdet.core.workspace import register, serializable __all__ = [ 'AnchorGenerator', 'RPNTargetAssign', 'GenerateProposals', 'MultiClassNMS', 'BBoxAssigner', 'MaskAssigner', 'RoIAlign', 'RoIPool', 'MultiBoxHead', 'SSDOutputDecoder', 'RetinaTargetAssign', 'RetinaOutputDecoder', 'ConvNorm', 'MultiClassSoftNMS' ] def ConvNorm(input, num_filters, filter_size, stride=1, groups=1, norm_decay=0., norm_type='affine_channel', norm_groups=32, dilation=1, lr_scale=1, freeze_norm=False, act=None, norm_name=None, initializer=None, name=None): fan = num_filters conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=((filter_size - 1) // 2) * dilation, dilation=dilation, groups=groups, act=None, param_attr=ParamAttr( name=name + "_weights", initializer=initializer, learning_rate=lr_scale), bias_attr=False, name=name + '.conv2d.output.1') norm_lr = 0. if freeze_norm else 1. pattr = ParamAttr( name=norm_name + '_scale', learning_rate=norm_lr * lr_scale, regularizer=L2Decay(norm_decay)) battr = ParamAttr( name=norm_name + '_offset', learning_rate=norm_lr * lr_scale, regularizer=L2Decay(norm_decay)) if norm_type in ['bn', 'sync_bn']: global_stats = True if freeze_norm else False out = fluid.layers.batch_norm( input=conv, act=act, name=norm_name + '.output.1', param_attr=pattr, bias_attr=battr, moving_mean_name=norm_name + '_mean', moving_variance_name=norm_name + '_variance', use_global_stats=global_stats) scale = fluid.framework._get_var(pattr.name) bias = fluid.framework._get_var(battr.name) elif norm_type == 'gn': out = fluid.layers.group_norm( input=conv, act=act, name=norm_name + '.output.1', groups=norm_groups, param_attr=pattr, bias_attr=battr) scale = fluid.framework._get_var(pattr.name) bias = fluid.framework._get_var(battr.name) elif norm_type == 'affine_channel': scale = fluid.layers.create_parameter( shape=[conv.shape[1]], dtype=conv.dtype, attr=pattr, default_initializer=fluid.initializer.Constant(1.)) bias = fluid.layers.create_parameter( shape=[conv.shape[1]], dtype=conv.dtype, attr=battr, default_initializer=fluid.initializer.Constant(0.)) out = fluid.layers.affine_channel( x=conv, scale=scale, bias=bias, act=act) if freeze_norm: scale.stop_gradient = True bias.stop_gradient = True return out @register @serializable class AnchorGenerator(object): __op__ = fluid.layers.anchor_generator __append_doc__ = True def __init__(self, stride=[16.0, 16.0], anchor_sizes=[32, 64, 128, 256, 512], aspect_ratios=[0.5, 1., 2.], variance=[1., 1., 1., 1.]): super(AnchorGenerator, self).__init__() self.anchor_sizes = anchor_sizes self.aspect_ratios = aspect_ratios self.variance = variance self.stride = stride @register @serializable class RPNTargetAssign(object): __op__ = fluid.layers.rpn_target_assign __append_doc__ = True def __init__(self, rpn_batch_size_per_im=256, rpn_straddle_thresh=0., rpn_fg_fraction=0.5, rpn_positive_overlap=0.7, rpn_negative_overlap=0.3, use_random=True): super(RPNTargetAssign, self).__init__() self.rpn_batch_size_per_im = rpn_batch_size_per_im self.rpn_straddle_thresh = rpn_straddle_thresh self.rpn_fg_fraction = rpn_fg_fraction self.rpn_positive_overlap = rpn_positive_overlap self.rpn_negative_overlap = rpn_negative_overlap self.use_random = use_random @register @serializable class GenerateProposals(object): __op__ = fluid.layers.generate_proposals __append_doc__ = True def __init__(self, pre_nms_top_n=6000, post_nms_top_n=1000, nms_thresh=.5, min_size=.1, eta=1.): super(GenerateProposals, self).__init__() self.pre_nms_top_n = pre_nms_top_n self.post_nms_top_n = post_nms_top_n self.nms_thresh = nms_thresh self.min_size = min_size self.eta = eta @register class MaskAssigner(object): __op__ = fluid.layers.generate_mask_labels __append_doc__ = True __shared__ = ['num_classes'] def __init__(self, num_classes=81, resolution=14): super(MaskAssigner, self).__init__() self.num_classes = num_classes self.resolution = resolution @register @serializable class MultiClassNMS(object): __op__ = fluid.layers.multiclass_nms __append_doc__ = True def __init__(self, score_threshold=.05, nms_top_k=-1, keep_top_k=100, nms_threshold=.5, normalized=False, nms_eta=1.0, background_label=0): super(MultiClassNMS, self).__init__() self.score_threshold = score_threshold self.nms_top_k = nms_top_k self.keep_top_k = keep_top_k self.nms_threshold = nms_threshold self.normalized = normalized self.nms_eta = nms_eta self.background_label = background_label @register @serializable class MultiClassSoftNMS(object): def __init__(self, score_threshold=0.01, keep_top_k=300, softnms_sigma=0.5, normalized=False, background_label=0, ): super(MultiClassSoftNMS, self).__init__() self.score_threshold = score_threshold self.keep_top_k = keep_top_k self.softnms_sigma = softnms_sigma self.normalized = normalized self.background_label = background_label def __call__( self, bboxes, scores ): def create_tmp_var(program, name, dtype, shape, lod_leval): return program.current_block().create_var(name=name, dtype=dtype, shape=shape, lod_leval=lod_leval) def _soft_nms_for_cls(dets, sigma, thres): """soft_nms_for_cls""" dets_final = [] while len(dets) > 0: maxpos = np.argmax(dets[:, 0]) dets_final.append(dets[maxpos].copy()) ts, tx1, ty1, tx2, ty2 = dets[maxpos] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] eta = 0 if self.normalized else 1 areas = (x2 - x1 + eta) * (y2 - y1 + eta) xx1 = np.maximum(tx1, x1) yy1 = np.maximum(ty1, y1) xx2 = np.minimum(tx2, x2) yy2 = np.minimum(ty2, y2) w = np.maximum(0.0, xx2 - xx1 + eta) h = np.maximum(0.0, yy2 - yy1 + eta) inter = w * h ovr = inter / (areas + areas[maxpos] - inter) weight = np.exp(-(ovr * ovr) / sigma) scores = scores * weight idx_keep = np.where(scores >= thres) dets[:, 0] = scores dets = dets[idx_keep] dets_final = np.array(dets_final).reshape(-1, 5) return dets_final def _soft_nms(bboxes, scores): bboxes = np.array(bboxes) scores = np.array(scores) class_nums = scores.shape[-1] softnms_thres = self.score_threshold softnms_sigma = self.softnms_sigma keep_top_k = self.keep_top_k cls_boxes = [[] for _ in range(class_nums)] cls_ids = [[] for _ in range(class_nums)] start_idx = 1 if self.background_label == 0 else 0 for j in range(start_idx, class_nums): inds = np.where(scores[:, j] >= softnms_thres)[0] scores_j = scores[inds, j] rois_j = bboxes[inds, j, :] dets_j = np.hstack((scores_j[:, np.newaxis], rois_j)).astype(np.float32, copy=False) cls_rank = np.argsort(-dets_j[:, 0]) dets_j = dets_j[cls_rank] cls_boxes[j] = _soft_nms_for_cls( dets_j, sigma=softnms_sigma, thres=softnms_thres ) cls_ids[j] = np.array( [j]*cls_boxes[j].shape[0] ).reshape(-1,1) cls_boxes = np.vstack(cls_boxes[start_idx:]) cls_ids = np.vstack(cls_ids[start_idx:]) pred_result = np.hstack( [cls_ids, cls_boxes] ) # Limit to max_per_image detections **over all classes** image_scores = cls_boxes[:,0] if len(image_scores) > keep_top_k: image_thresh = np.sort(image_scores)[-keep_top_k] keep = np.where(cls_boxes[:, 0] >= image_thresh)[0] pred_result = pred_result[keep, :] res = fluid.LoDTensor() res.set_lod([[0, pred_result.shape[0]]]) if pred_result.shape[0] == 0: pred_result = np.array( [[1]], dtype=np.float32 ) res.set(pred_result, fluid.CPUPlace()) return res pred_result = create_tmp_var(fluid.default_main_program(), name='softnms_pred_result', dtype='float32', shape=[6], lod_leval=1) fluid.layers.py_func(func=_soft_nms, x=[bboxes, scores], out=pred_result) return pred_result @register class BBoxAssigner(object): __op__ = fluid.layers.generate_proposal_labels __append_doc__ = True __shared__ = ['num_classes'] def __init__(self, batch_size_per_im=512, fg_fraction=.25, fg_thresh=.5, bg_thresh_hi=.5, bg_thresh_lo=0., bbox_reg_weights=[0.1, 0.1, 0.2, 0.2], num_classes=81, shuffle_before_sample=True): super(BBoxAssigner, self).__init__() self.batch_size_per_im = batch_size_per_im self.fg_fraction = fg_fraction self.fg_thresh = fg_thresh self.bg_thresh_hi = bg_thresh_hi self.bg_thresh_lo = bg_thresh_lo self.bbox_reg_weights = bbox_reg_weights self.class_nums = num_classes self.use_random = shuffle_before_sample @register class RoIAlign(object): __op__ = fluid.layers.roi_align __append_doc__ = True def __init__(self, resolution=7, spatial_scale=1. / 16, sampling_ratio=0): super(RoIAlign, self).__init__() if isinstance(resolution, Integral): resolution = [resolution, resolution] self.pooled_height = resolution[0] self.pooled_width = resolution[1] self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio @register class RoIPool(object): __op__ = fluid.layers.roi_pool __append_doc__ = True def __init__(self, resolution=7, spatial_scale=1. / 16): super(RoIPool, self).__init__() if isinstance(resolution, Integral): resolution = [resolution, resolution] self.pooled_height = resolution[0] self.pooled_width = resolution[1] self.spatial_scale = spatial_scale @register class MultiBoxHead(object): __op__ = fluid.layers.multi_box_head __append_doc__ = True def __init__(self, min_ratio=20, max_ratio=90, base_size=300, min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0], max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0], aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]], steps=None, offset=0.5, flip=True, min_max_aspect_ratios_order=False, kernel_size=1, pad=0): super(MultiBoxHead, self).__init__() self.min_ratio = min_ratio self.max_ratio = max_ratio self.base_size = base_size self.min_sizes = min_sizes self.max_sizes = max_sizes self.aspect_ratios = aspect_ratios self.steps = steps self.offset = offset self.flip = flip self.min_max_aspect_ratios_order = min_max_aspect_ratios_order self.kernel_size = kernel_size self.pad = pad @register @serializable class SSDOutputDecoder(object): __op__ = fluid.layers.detection_output __append_doc__ = True def __init__(self, nms_threshold=0.45, nms_top_k=400, keep_top_k=200, score_threshold=0.01, nms_eta=1.0, background_label=0): super(SSDOutputDecoder, self).__init__() self.nms_threshold = nms_threshold self.background_label = background_label self.nms_top_k = nms_top_k self.keep_top_k = keep_top_k self.score_threshold = score_threshold self.nms_eta = nms_eta @register @serializable class RetinaTargetAssign(object): __op__ = fluid.layers.retinanet_target_assign __append_doc__ = True def __init__(self, positive_overlap=0.5, negative_overlap=0.4): super(RetinaTargetAssign, self).__init__() self.positive_overlap = positive_overlap self.negative_overlap = negative_overlap @register @serializable class RetinaOutputDecoder(object): __op__ = fluid.layers.retinanet_detection_output __append_doc__ = True def __init__(self, score_thresh=0.05, nms_thresh=0.3, pre_nms_top_n=1000, detections_per_im=100, nms_eta=1.0): super(RetinaOutputDecoder, self).__init__() self.score_threshold = score_thresh self.nms_threshold = nms_thresh self.nms_top_k = pre_nms_top_n self.keep_top_k = detections_per_im self.nms_eta = nms_eta