/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenMatrix = framework::EigenMatrix; template class CPUDropoutKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* x = context.Input("X"); auto* y = context.Output("Out"); const auto* x_data = x->data(); auto* y_data = y->mutable_data(context.GetPlace()); float dropout_prob = context.Attr("dropout_prob"); if (context.Attr("is_training")) { auto* mask = context.Output("Mask"); auto* mask_data = mask->mutable_data(context.GetPlace()); int seed = context.Attr("seed"); std::minstd_rand engine; engine.seed(seed); std::uniform_real_distribution dist(0, 1); size_t size = framework::product(mask->dims()); for (size_t i = 0; i < size; ++i) { if (dist(engine) < dropout_prob) { mask_data[i] = 0; y_data[i] = 0; } else { mask_data[i] = 1; y_data[i] = x_data[i]; } } } else { auto X = EigenMatrix::Reshape(*x, 1); auto Y = EigenMatrix::Reshape(*y, 1); auto place = context.GetEigenDevice(); Y.device(place) = X * dropout_prob; } } }; template class DropoutGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { PADDLE_ENFORCE(context.Attr("is_training"), "GradOp is only callable when is_training is true"); auto* grad_x = context.Output(framework::GradVarName("X")); auto* grad_y = context.Input(framework::GradVarName("Out")); auto* mask = context.Input("Mask"); grad_x->mutable_data(context.GetPlace()); auto M = EigenMatrix::Reshape(*mask, 1); auto dX = EigenMatrix::Reshape(*grad_x, 1); auto dY = EigenMatrix::Reshape(*grad_y, 1); auto place = context.GetEigenDevice(); dX.device(place) = dY * M; } }; } // namespace operators } // namespace paddle