# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import fluid from ppdet.core.workspace import register from ppdet.modeling.ops import ConvNorm, DeformConvNorm __all__ = ['SOLOv2MaskHead'] @register class SOLOv2MaskHead(object): """ SOLOv2MaskHead Args: out_channels (int): The channel number of output variable. start_level (int): The position where the input starts. end_level (int): The position where the input ends. num_classes (int): Number of classes in SOLOv2MaskHead output. use_dcn_in_tower: Whether to use dcn in tower or not. """ __shared__ = ['num_classes'] def __init__(self, out_channels=128, start_level=0, end_level=3, num_classes=81, use_dcn_in_tower=False): super(SOLOv2MaskHead, self).__init__() assert start_level >= 0 and end_level >= start_level self.out_channels = out_channels self.start_level = start_level self.end_level = end_level self.num_classes = num_classes self.use_dcn_in_tower = use_dcn_in_tower self.conv_type = [ConvNorm, DeformConvNorm] def _convs_levels(self, conv_feat, level, name=None): conv_func = self.conv_type[0] if self.use_dcn_in_tower: conv_func = self.conv_type[1] if level == 0: return conv_func( input=conv_feat, num_filters=self.out_channels, filter_size=3, stride=1, norm_type='gn', norm_groups=32, freeze_norm=False, act='relu', initializer=fluid.initializer.NormalInitializer(scale=0.01), norm_name=name + '.conv' + str(level) + '.gn', name=name + '.conv' + str(level)) for j in range(level): conv_feat = conv_func( input=conv_feat, num_filters=self.out_channels, filter_size=3, stride=1, norm_type='gn', norm_groups=32, freeze_norm=False, act='relu', initializer=fluid.initializer.NormalInitializer(scale=0.01), norm_name=name + '.conv' + str(j) + '.gn', name=name + '.conv' + str(j)) conv_feat = fluid.layers.resize_bilinear( conv_feat, scale=2, name='upsample' + str(level) + str(j), align_corners=False, align_mode=0) return conv_feat def _conv_pred(self, conv_feat): conv_func = self.conv_type[0] if self.use_dcn_in_tower: conv_func = self.conv_type[1] conv_feat = conv_func( input=conv_feat, num_filters=self.num_classes, filter_size=1, stride=1, norm_type='gn', norm_groups=32, freeze_norm=False, act='relu', initializer=fluid.initializer.NormalInitializer(scale=0.01), norm_name='mask_feat_head.conv_pred.0.gn', name='mask_feat_head.conv_pred.0') return conv_feat def get_output(self, inputs, batch_size=1): """ Get SOLOv2MaskHead output. Args: inputs(list[Variable]): feature map from each necks with shape of [N, C, H, W] batch_size (int): batch size Returns: ins_pred(Variable): Output of SOLOv2MaskHead head """ range_level = self.end_level - self.start_level + 1 feature_add_all_level = self._convs_levels( inputs[0], 0, name='mask_feat_head.convs_all_levels.0') for i in range(1, range_level): input_p = inputs[i] if i == 3: input_feat = input_p x_range = paddle.linspace( -1, 1, fluid.layers.shape(input_feat)[-1], dtype='float32') y_range = paddle.linspace( -1, 1, fluid.layers.shape(input_feat)[-2], dtype='float32') y, x = paddle.tensor.meshgrid([y_range, x_range]) x = fluid.layers.unsqueeze(x, [0, 1]) y = fluid.layers.unsqueeze(y, [0, 1]) y = fluid.layers.expand(y, expand_times=[batch_size, 1, 1, 1]) x = fluid.layers.expand(x, expand_times=[batch_size, 1, 1, 1]) coord_feat = fluid.layers.concat([x, y], axis=1) input_p = fluid.layers.concat([input_p, coord_feat], axis=1) feature_add_all_level = fluid.layers.elementwise_add( feature_add_all_level, self._convs_levels( input_p, i, name='mask_feat_head.convs_all_levels.{}'.format(i))) ins_pred = self._conv_pred(feature_add_all_level) return ins_pred