#!/bin/bash BUILD_PATH=/paddle/fp16_build WHEEL_PATH=$BUILD_PATH/python/dist INFER_PATH=$BUILD_PATH/paddle/fluid/inference/tests/book DEMO_PATH=/paddle/paddle/contrib/float16 # Use the single most powerful CUDA GPU on your machine export CUDA_VISIBLE_DEVICES=0 # Build the PaddlePaddle Fluid wheel package and install it. mkdir -p $BUILD_PATH && cd $BUILD_PATH cmake .. -DWITH_AVX=OFF \ -DWITH_MKL=OFF \ -DWITH_GPU=ON \ -DWITH_TESTING=ON \ -DWITH_PROFILER=ON \ -DWITH_FLUID_ONLY=ON make -j `nproc` pip install -U "$WHEEL_PATH/$(ls $WHEEL_PATH)" cd $DEMO_PATH # Clear previous log results rm -f *.log # Test the float16 inference accuracy of resnet32 on cifar10 data set stdbuf -oL python float16_inference_demo.py \ --data_set=cifar10 \ --model=resnet \ --threshold=0.6 \ --repeat=10 \ 2>&1 | tee -a float16_inference_accuracy.log # Sleep to cool down the GPU for consistent benchmarking sleep 2m # benchmarking parameters REPEAT=1000 MAXIMUM_BATCH_SIZE=512 for ((batch_size = 1; batch_size <= MAXIMUM_BATCH_SIZE; batch_size *= 2)); do # Test inference benchmark of vgg16 on imagenet stdbuf -oL python float16_inference_demo.py \ --data_set=imagenet \ --model=vgg \ --threshold=0.001 \ --repeat=1 \ $INFER_PATH/test_inference_image_classification_vgg \ --dirname=$DEMO_PATH/image_classification_imagenet_vgg.inference.model \ --fp16_dirname=$DEMO_PATH/float16_image_classification_imagenet_vgg.inference.model \ --repeat=$REPEAT \ --batch_size=$batch_size \ --skip_cpu=true \ 2>&1 | tee -a imagenet_vgg16_benchmark.log sleep 2m # Test inference benchmark of resnet50 on imagenet stdbuf -oL python float16_inference_demo.py \ --data_set=imagenet \ --model=resnet \ --threshold=0.001 \ --repeat=1 \ $INFER_PATH/test_inference_image_classification_resnet \ --dirname=$DEMO_PATH/image_classification_imagenet_resnet.inference.model \ --fp16_dirname=$DEMO_PATH/float16_image_classification_imagenet_resnet.inference.model \ --repeat=$REPEAT \ --batch_size=$batch_size \ --skip_cpu=true \ 2>&1 | tee -a imagenet_resnet50_benchmark.log sleep 2m # Test inference benchmark of vgg16 on cifar10 stdbuf -oL python float16_inference_demo.py \ --data_set=cifar10 \ --model=vgg \ --threshold=0.001 \ --repeat=1 \ $INFER_PATH/test_inference_image_classification_vgg \ --dirname=$DEMO_PATH/image_classification_cifar10_vgg.inference.model \ --fp16_dirname=$DEMO_PATH/float16_image_classification_cifar10_vgg.inference.model \ --repeat=$REPEAT \ --batch_size=$batch_size \ --skip_cpu=true \ 2>&1 | tee -a cifar10_vgg16_benchmark.log sleep 1m # Test inference benchmark of resnet32 on cifar10 stdbuf -oL python float16_inference_demo.py \ --data_set=cifar10 \ --model=resnet \ --threshold=0.001 \ --repeat=1 \ $INFER_PATH/test_inference_image_classification_vgg \ --dirname=$DEMO_PATH/image_classification_cifar10_resnet.inference.model \ --fp16_dirname=$DEMO_PATH/float16_image_classification_cifar10_resnet.inference.model \ --repeat=$REPEAT \ --batch_size=$batch_size \ --skip_cpu=true \ 2>&1 | tee -a cifar10_resnet32_benchmark.log sleep 1m done