/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "LayerGradUtil.h" #include "TestUtil.h" using namespace paddle; // NOLINT using namespace std; // NOLINT // Do one forward pass of priorBox layer and check to see if its output // matches the given result void doOnePriorBoxTest(size_t feature_map_width, size_t feature_map_height, size_t image_width, size_t image_height, vector min_size, vector max_size, vector aspect_ratio, vector variance, bool use_gpu, MatrixPtr& result) { // Setting up the priorbox layer TestConfig configt; configt.layerConfig.set_type("priorbox"); configt.inputDefs.push_back({INPUT_DATA, "featureMap", 1, 0}); LayerInputConfig* input = configt.layerConfig.add_inputs(); configt.inputDefs.push_back({INPUT_DATA, "image", 1, 0}); configt.layerConfig.add_inputs(); PriorBoxConfig* pb = input->mutable_priorbox_conf(); for (size_t i = 0; i < min_size.size(); i++) pb->add_min_size(min_size[i]); for (size_t i = 0; i < max_size.size(); i++) pb->add_max_size(max_size[i]); for (size_t i = 0; i < variance.size(); i++) pb->add_variance(variance[i]); for (size_t i = 0; i < aspect_ratio.size(); i++) pb->add_aspect_ratio(aspect_ratio[i]); // data layer initialize std::vector dataLayers; LayerMap layerMap; vector datas; initDataLayer( configt, &dataLayers, &datas, &layerMap, "priorbox", 1, false, use_gpu); dataLayers[0]->getOutput().setFrameHeight(feature_map_height); dataLayers[0]->getOutput().setFrameWidth(feature_map_width); dataLayers[1]->getOutput().setFrameHeight(image_height); dataLayers[1]->getOutput().setFrameWidth(image_width); // test layer initialize std::vector parameters; LayerPtr priorboxLayer; initTestLayer(configt, &layerMap, ¶meters, &priorboxLayer); priorboxLayer->forward(PASS_GC); checkMatrixEqual(priorboxLayer->getOutputValue(), result); } TEST(Layer, priorBoxLayerFwd) { vector minSize; vector maxSize; vector aspectRatio; vector variance; bool useGpu = false; minSize.push_back(276); maxSize.push_back(330); variance.push_back(0.1); variance.push_back(0.1); variance.push_back(0.2); variance.push_back(0.2); // CPU case 1. MatrixPtr result; real resultData[] = {0.04, 0.04, 0.96, 0.96, 0.1, 0.1, 0.2, 0.2, 0, 0, 1, 1, 0.1, 0.1, 0.2, 0.2}; result = Matrix::create(1, 2 * 8, false, useGpu); result->setData(resultData); doOnePriorBoxTest(/* feature_map_width */ 1, /* feature_map_height */ 1, /* image_width */ 300, /* image_height */ 300, minSize, maxSize, aspectRatio, variance, useGpu, result); // CPU case 2. variance[1] = 0.2; variance[3] = 0.1; maxSize.pop_back(); real resultData2[] = {0, 0, 0.595, 0.595, 0.1, 0.2, 0.2, 0.1, 0.405, 0, 1, 0.595, 0.1, 0.2, 0.2, 0.1, 0, 0.405, 0.595, 1, 0.1, 0.2, 0.2, 0.1, 0.405, 0.405, 1, 1, 0.1, 0.2, 0.2, 0.1}; Matrix::resizeOrCreate(result, 1, 4 * 8, false, useGpu); result->setData(resultData2); doOnePriorBoxTest(/* feature_map_width */ 2, /* feature_map_height */ 2, /* image_width */ 400, /* image_height */ 400, minSize, maxSize, aspectRatio, variance, useGpu, result); // CPU case 3. aspectRatio.push_back(2); real resultData3[] = {0.04, 0.04, 0.96, 0.96, 0.1, 0.2, 0.2, 0.1, 0, 0.17473088, 1, 0.825269, 0.1, 0.2, 0.2, 0.1, 0.17473088, 0, 0.825269, 1, 0.1, 0.2, 0.2, 0.1}; Matrix::resizeOrCreate(result, 1, 3 * 8, false, useGpu); result->setData(resultData3); doOnePriorBoxTest(/* feature_map_width */ 1, /* feature_map_height */ 1, /* image_width */ 300, /* image_height */ 300, minSize, maxSize, aspectRatio, variance, useGpu, result); #ifndef PADDLE_ONLY_CPU // reset the input parameters variance[1] = 0.1; variance[3] = 0.2; maxSize.push_back(330); aspectRatio.pop_back(); MatrixPtr resultGpu; useGpu = true; // GPU case 1. resultGpu = Matrix::create(1, 2 * 8, false, useGpu); resultGpu->copyFrom(resultData, 2 * 8); doOnePriorBoxTest(/* feature_map_width */ 1, /* feature_map_height */ 1, /* image_width */ 300, /* image_height */ 300, minSize, maxSize, aspectRatio, variance, useGpu, resultGpu); // GPU case 2. variance[1] = 0.2; variance[3] = 0.1; maxSize.pop_back(); Matrix::resizeOrCreate(resultGpu, 1, 4 * 8, false, useGpu); resultGpu->copyFrom(resultData2, 4 * 8); doOnePriorBoxTest(/* feature_map_width */ 2, /* feature_map_height */ 2, /* image_width */ 400, /* image_height */ 400, minSize, maxSize, aspectRatio, variance, useGpu, resultGpu); // GPU case 3. aspectRatio.push_back(2); Matrix::resizeOrCreate(resultGpu, 1, 3 * 8, false, useGpu); resultGpu->copyFrom(resultData3, 3 * 8); doOnePriorBoxTest(/* feature_map_width */ 1, /* feature_map_height */ 1, /* image_width */ 300, /* image_height */ 300, minSize, maxSize, aspectRatio, variance, useGpu, resultGpu); #endif } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); return RUN_ALL_TESTS(); }