/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/trainer/Trainer.h" #include #include using namespace paddle; // NOLINT using namespace std; // NOLINT static const string& configFile1 = "trainer/tests/sample_trainer_config_qb_rnn.conf"; P_DECLARE_bool(use_gpu); P_DECLARE_string(config); P_DECLARE_int32(gpu_id); P_DECLARE_int32(seed); P_DECLARE_int32(num_passes); P_DECLARE_int32(saving_period); P_DECLARE_int32(num_gradient_servers); P_DECLARE_int32(port); P_DECLARE_bool(local); P_DECLARE_bool(use_old_updater); P_DECLARE_bool(parallel_nn); P_DECLARE_string(config_args); P_DEFINE_double(max_diff_ratio, 0.0f, "max diff ratio allowed for parameters value"); int gNumDevices = 0; std::vector trainerOnePassTest(const string& configFile, bool sparseUpdate, int trainerCount = 1, bool useGpu = false) { FLAGS_use_gpu = useGpu; FLAGS_config = configFile; FLAGS_trainer_count = trainerCount; FLAGS_config_args = sparseUpdate ? "sparse_update=1" : "sparse_update=0"; LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount << " configFile=" << configFile << " sparseUpdate=" << sparseUpdate; srand(FLAGS_seed); *ThreadLocalRand::getSeed() = FLAGS_seed; ThreadLocalRandomEngine::get().seed(FLAGS_seed); if (useGpu) { CHECK_LE(trainerCount, gNumDevices); } std::vector> pservers; if (!FLAGS_local) { int numPorts = FLAGS_ports_num + FLAGS_ports_num_for_sparse; pservers.resize(numPorts); for (int i = 0; i < numPorts; ++i) { pservers[i].reset(new ParameterServer2(std::string(), FLAGS_port + i)); pservers[i]->init(); pservers[i]->start(); } } Trainer trainer; trainer.init(TrainerConfigHelper::createFromFlagConfig()); trainer.train(); return trainer.getGradientMachine()->getParameters(); } std::vector& getDenseParameters() { static std::vector denseParameters; if (denseParameters.empty()) { // use dense training as base FLAGS_local = true; denseParameters = trainerOnePassTest(configFile1, false); } return denseParameters; } void checkBuffer(real* A, const char* desA, real* B, const char* desB, size_t len, double maxDiffRatio) { double maxDiff = 0; double maxValue = 0; for (size_t i = 0; i < len; ++i) { double diff = fabs(A[i] - B[i]); maxValue = std::max(maxValue, std::max(fabs(A[i]), fabs(B[i]))); maxDiff = std::max(maxDiff, diff); } EXPECT_LE(maxDiff / maxValue, maxDiffRatio); LOG(INFO) << " maxDiff=" << maxDiff << " maxValue=" << maxValue << " maxDiff/maxValue=" << maxDiff / maxValue << "\n\n"; } void compareValue(const vector& parametersA, const vector& parametersB, double maxDiffRatio = 0.0) { LOG(INFO) << "\n\n--------------------------------" << " Check Gradient Machine Parameters:" << " -------------------------------------\n"; for (size_t i = 0; i < parametersA.size(); ++i) { ParameterPtr parameterA, parameterB; parameterA = parametersA[i]; parameterB = parametersB[i]; CpuVector paraA(parameterA->getSize()); CpuVector paraB(parameterB->getSize()); paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE)); paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE)); LOG(INFO) << "\n\n----------- PARAMETER_VALUE: " << parameterA->getName() << " ; size : " << paraA.getSize() << " ------------"; checkBuffer(paraA.getData(), "para_A", paraB.getData(), "para_B", paraA.getSize(), maxDiffRatio); } } TEST(compareSparse, cpu) { FLAGS_local = 1; // disable remote sparse update in parameter config std::vector parameters = trainerOnePassTest(configFile1, true); compareValue(getDenseParameters(), parameters); } TEST(compareSparse, remote_cpu) { FLAGS_local = 0; // will enable remote sparse update FLAGS_ports_num_for_sparse = 5; std::vector parameters = trainerOnePassTest(configFile1, true); compareValue(getDenseParameters(), parameters); } TEST(compareSparse, cpu10_local_vs_remote) { FLAGS_local = 1; // disable remote sparse update in parameter config std::vector localParameters = trainerOnePassTest(configFile1, true, 2); FLAGS_local = 0; // will enable remote sparse update FLAGS_ports_num_for_sparse = 5; std::vector remoteParameters = trainerOnePassTest(configFile1, true, 2); compareValue(localParameters, remoteParameters); } TEST(compareSparse, multiGradientMachine) { int numGpu; #ifdef PADDLE_TYPE_DOUBLE double eps = 1e-8; #else double eps = 1e-4; #endif numGpu = hl_get_device_count(); for (bool local : {false, true}) { FLAGS_local = local; FLAGS_ports_num_for_sparse = 5; for (bool useGpu : {false, true}) { #ifdef PADDLE_ONLY_CPU if (useGpu) continue; #endif FLAGS_parallel_nn = useGpu; LOG(INFO) << " local=" << local << " useGpu=" << useGpu; int trainerCount = useGpu ? numGpu : 2; std::vector parameters = trainerOnePassTest(configFile1, true, trainerCount, useGpu); compareValue(getDenseParameters(), parameters, eps); } } FLAGS_parallel_nn = false; } TEST(compareSparse, NeuralNetwork) { #ifdef PADDLE_TYPE_DOUBLE double eps = 1e-8; #else double eps = 1e-4; #endif for (bool local : {false, true}) { FLAGS_local = local; FLAGS_ports_num_for_sparse = 5; for (bool useGpu : {false, true}) { #ifdef PADDLE_ONLY_CPU if (useGpu) continue; #endif FLAGS_parallel_nn = useGpu; LOG(INFO) << " local=" << local << " useGpu=" << useGpu; int trainerCount = 1; std::vector parameters = trainerOnePassTest(configFile1, true, trainerCount, useGpu); compareValue(getDenseParameters(), parameters, useGpu ? eps : 0); } } FLAGS_parallel_nn = false; } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); initPython(argc, argv); gNumDevices = hl_get_device_count(); FLAGS_num_passes = 1; // train one pass FLAGS_saving_period = 100000; // do not save parameter return RUN_ALL_TESTS(); }