# 模型库和基线 ## 测试环境 - Python 3.7 - PaddlePaddle 每日版本 - CUDA 9.0 - cuDNN >=7.4 - NCCL 2.1.2 ## 通用设置 - 所有模型均在COCO17数据集中训练和测试。 - 除非特殊说明,所有ResNet骨干网络采用[ResNet-B](https://arxiv.org/pdf/1812.01187)结构。 - 对于RCNN和RetinaNet系列模型,训练阶段仅使用水平翻转作为数据增强,测试阶段不使用数据增强。 - **推理时间(fps)**: 推理时间是在一张Tesla V100的GPU上通过'tools/eval.py'测试所有验证集得到,单位是fps(图片数/秒), cuDNN版本是7.5,包括数据加载、网络前向执行和后处理, batch size是1。 ## 训练策略 - 我们采用和[Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules)相同的训练策略。 - 1x 策略表示:在总batch size为8时,初始学习率为0.01,在8 epoch和11 epoch后学习率分别下降10倍,最终训练12 epoch。 - 2x 策略为1x策略的两倍,同时学习率调整位置也为1x的两倍。 ## ImageNet预训练模型 Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型均通过标准的Imagenet-1k数据集训练得到,ResNet和MobileNet等是采用余弦学习率调整策略或SSLD知识蒸馏训练得到的高精度预训练模型,可在[PaddleClas](https://github.com/PaddlePaddle/PaddleClas)查看模型细节。 ## 基线 ### Faster R-CNN 请参考[Faster R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/faster_rcnn/) ### Mask R-CNN 请参考[Mask R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/mask_rcnn/) ### Cascade R-CNN 请参考[Cascade R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/cascade_rcnn/) ### YOLOv3 请参考[YOLOv3](https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/yolov3/) ### SSD 请参考[SSD](https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/ssd/) ### FCOS 请参考[FCOS](https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/fcos/) ### SOLOv2 请参考[SOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/dygraph/configs/solov2/)