简体中文 | [English](README_en.md)
## 🔥 热门活动 🚀 **第一期PaddleDetection闭门直播答疑来啦** 🚀 ⏱**时间:晚上8-9点** 💡**参与方式:https://meeting.tencent.com/dm/N534LM53th13** - 讲师:百度飞桨一线研发工程师 - 面向人群:PaddleDetection使用者 - 内容:针对大家近期在答疑专栏中提出的问题进行详细解答 - ① 产品使用:常见报错如何解决、如何使用特定功能等 - ② 技术咨询:特定模型如何优化?实用的调参trick分享等 - ③ 功能新需求:高频需求的开发进展以及目前可实现的方案等 - ✨附加环节:在线提问现场答疑 ## 产品动态 - 🔥 **2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)** - 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),发布s/m/l/x版本,l版本COCO test2017数据集精度51.4%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。 - 发布边缘端和CPU端超轻量SOTA目标检测模型[PP-PicoDet增强版](configs/picodet),精度提升2%左右,CPU预测速度提升63%,新增参数量0.7M的PicoDet-XS模型,提供模型稀疏化和量化功能,便于模型加速,各类硬件无需单独开发后处理模块,降低部署门槛。 - 发布实时行人分析工具[PP-Human](deploy/pphuman),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。 - 新增[YOLOX](configs/yolox)目标检测模型,支持nano/tiny/s/m/l/x版本,x版本COCO val2017数据集精度51.8%。 - 2021.11.03: PaddleDetection发布[release/2.3版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3) - 发布轻量级检测特色模型⚡[PP-PicoDet](configs/picodet),0.99m的参数量可实现精度30+mAP、速度150FPS。 - 发布轻量级关键点特色模型⚡[PP-TinyPose](configs/keypoint/tiny_pose),单人场景FP16推理可达122FPS、51.8AP,具有精度高速度快、检测人数无限制、微小目标效果好的优势。 - 发布实时跟踪系统[PP-Tracking](deploy/pptracking),覆盖单、多镜头下行人、车辆、多类别跟踪,对小目标、密集型特殊优化,提供人、车流量技术解决方案。 - 新增[Swin Transformer](configs/faster_rcnn),[TOOD](configs/tood),[GFL](configs/gfl)目标检测模型。 - 发布[Sniper](configs/sniper)小目标检测优化模型,发布针对EdgeBoard优化[PP-YOLO-EB](configs/ppyolo)模型。 - 新增轻量化关键点模型[Lite HRNet](configs/keypoint)关键点模型并支持Paddle Lite部署。 - 2021.08.10: PaddleDetection发布[release/2.2版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.2) - 发布Transformer检测系列模型,包括[DETR](configs/detr), [Deformable DETR](configs/deformable_detr), [Sparse RCNN](configs/sparse_rcnn)。 - 新增Dark HRNet关键点模型和MPII数据集[关键点模型](configs/keypoint) - 新增[人头](configs/mot/headtracking21)、[车辆](configs/mot/vehicle)跟踪垂类模型。 - 2021.05.20: PaddleDetection发布[release/2.1版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1) - 新增[关键点检测](configs/keypoint),模型包括HigherHRNet,HRNet。 - 新增[多目标跟踪](configs/mot)能力,模型包括DeepSORT,JDE,FairMOT。 - 发布PPYOLO系列模型压缩模型,新增[ONNX模型导出教程](deploy/EXPORT_ONNX_MODEL.md)。 ## 简介 **PaddleDetection**为基于飞桨PaddlePaddle的端到端目标检测套件,内置**30+模型算法**及**250+预训练模型**,覆盖**目标检测、实例分割、跟踪、关键点检测**等方向,其中包括**服务器端和移动端高精度、轻量级**产业级SOTA模型、冠军方案和学术前沿算法,并提供配置化的网络模块组件、十余种数据增强策略和损失函数等高阶优化支持和多种部署方案,在打通数据处理、模型开发、训练、压缩、部署全流程的基础上,提供丰富的案例及教程,加速算法产业落地应用。 #### 提供目标检测、实例分割、多目标跟踪、关键点检测等多种能力Architectures | Backbones | Components | Data Augmentation |
|
|
|
|