# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import sys import numpy as np import itertools import paddle from ppdet.modeling.rbox_utils import poly2rbox_np from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = [ 'draw_pr_curve', 'bbox_area', 'jaccard_overlap', 'prune_zero_padding', 'DetectionMAP', 'ap_per_class', 'compute_ap', ] def draw_pr_curve(precision, recall, iou=0.5, out_dir='pr_curve', file_name='precision_recall_curve.jpg'): if not os.path.exists(out_dir): os.makedirs(out_dir) output_path = os.path.join(out_dir, file_name) try: import matplotlib.pyplot as plt except Exception as e: logger.error('Matplotlib not found, plaese install matplotlib.' 'for example: `pip install matplotlib`.') raise e plt.cla() plt.figure('P-R Curve') plt.title('Precision/Recall Curve(IoU={})'.format(iou)) plt.xlabel('Recall') plt.ylabel('Precision') plt.grid(True) plt.plot(recall, precision) plt.savefig(output_path) def bbox_area(bbox, is_bbox_normalized): """ Calculate area of a bounding box """ norm = 1. - float(is_bbox_normalized) width = bbox[2] - bbox[0] + norm height = bbox[3] - bbox[1] + norm return width * height def jaccard_overlap(pred, gt, is_bbox_normalized=False): """ Calculate jaccard overlap ratio between two bounding box """ if pred[0] >= gt[2] or pred[2] <= gt[0] or \ pred[1] >= gt[3] or pred[3] <= gt[1]: return 0. inter_xmin = max(pred[0], gt[0]) inter_ymin = max(pred[1], gt[1]) inter_xmax = min(pred[2], gt[2]) inter_ymax = min(pred[3], gt[3]) inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax], is_bbox_normalized) pred_size = bbox_area(pred, is_bbox_normalized) gt_size = bbox_area(gt, is_bbox_normalized) overlap = float(inter_size) / (pred_size + gt_size - inter_size) return overlap def calc_rbox_iou(pred, gt_poly): """ calc iou between rotated bbox """ # calc iou of bounding box for speedup pred = np.array(pred, np.float32).reshape(-1, 2) gt_poly = np.array(gt_poly, np.float32).reshape(-1, 2) pred_rect = [ np.min(pred[:, 0]), np.min(pred[:, 1]), np.max(pred[:, 0]), np.max(pred[:, 1]) ] gt_rect = [ np.min(gt_poly[:, 0]), np.min(gt_poly[:, 1]), np.max(gt_poly[:, 0]), np.max(gt_poly[:, 1]) ] iou = jaccard_overlap(pred_rect, gt_rect, False) if iou <= 0: return iou # calc rbox iou pred_rbox = poly2rbox_np(pred.reshape(-1, 8)).reshape(-1, 5) gt_rbox = poly2rbox_np(gt_poly.reshape(-1, 8)).reshape(-1, 5) try: from ext_op import rbox_iou except Exception as e: print("import custom_ops error, try install ext_op " \ "following ppdet/ext_op/README.md", e) sys.stdout.flush() sys.exit(-1) pd_gt_rbox = paddle.to_tensor(gt_rbox, dtype='float32') pd_pred_rbox = paddle.to_tensor(pred_rbox, dtype='float32') iou = rbox_iou(pd_gt_rbox, pd_pred_rbox) iou = iou.numpy() return iou[0][0] def prune_zero_padding(gt_box, gt_label, difficult=None): valid_cnt = 0 for i in range(len(gt_box)): if (gt_box[i] == 0).all(): break valid_cnt += 1 return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt] if difficult is not None else None) class DetectionMAP(object): """ Calculate detection mean average precision. Currently support two types: 11point and integral Args: class_num (int): The class number. overlap_thresh (float): The threshold of overlap ratio between prediction bounding box and ground truth bounding box for deciding true/false positive. Default 0.5. map_type (str): Calculation method of mean average precision, currently support '11point' and 'integral'. Default '11point'. is_bbox_normalized (bool): Whether bounding boxes is normalized to range[0, 1]. Default False. evaluate_difficult (bool): Whether to evaluate difficult bounding boxes. Default False. catid2name (dict): Mapping between category id and category name. classwise (bool): Whether per-category AP and draw P-R Curve or not. """ def __init__(self, class_num, overlap_thresh=0.5, map_type='11point', is_bbox_normalized=False, evaluate_difficult=False, catid2name=None, classwise=False): self.class_num = class_num self.overlap_thresh = overlap_thresh assert map_type in ['11point', 'integral'], \ "map_type currently only support '11point' "\ "and 'integral'" self.map_type = map_type self.is_bbox_normalized = is_bbox_normalized self.evaluate_difficult = evaluate_difficult self.classwise = classwise self.classes = [] for cname in catid2name.values(): self.classes.append(cname) self.reset() def update(self, bbox, score, label, gt_box, gt_label, difficult=None): """ Update metric statics from given prediction and ground truth infomations. """ if difficult is None: difficult = np.zeros_like(gt_label) # record class gt count for gtl, diff in zip(gt_label, difficult): if self.evaluate_difficult or int(diff) == 0: self.class_gt_counts[int(np.array(gtl))] += 1 # record class score positive visited = [False] * len(gt_label) for b, s, l in zip(bbox, score, label): pred = b.tolist() if isinstance(b, np.ndarray) else b max_idx = -1 max_overlap = -1.0 for i, gl in enumerate(gt_label): if int(gl) == int(l): if len(gt_box[i]) == 8: overlap = calc_rbox_iou(pred, gt_box[i]) else: overlap = jaccard_overlap(pred, gt_box[i], self.is_bbox_normalized) if overlap > max_overlap: max_overlap = overlap max_idx = i if max_overlap > self.overlap_thresh: if self.evaluate_difficult or \ int(np.array(difficult[max_idx])) == 0: if not visited[max_idx]: self.class_score_poss[int(l)].append([s, 1.0]) visited[max_idx] = True else: self.class_score_poss[int(l)].append([s, 0.0]) else: self.class_score_poss[int(l)].append([s, 0.0]) def reset(self): """ Reset metric statics """ self.class_score_poss = [[] for _ in range(self.class_num)] self.class_gt_counts = [0] * self.class_num self.mAP = 0.0 def accumulate(self): """ Accumulate metric results and calculate mAP """ mAP = 0. valid_cnt = 0 eval_results = [] for score_pos, count in zip(self.class_score_poss, self.class_gt_counts): if count == 0: continue if len(score_pos) == 0: valid_cnt += 1 continue accum_tp_list, accum_fp_list = \ self._get_tp_fp_accum(score_pos) precision = [] recall = [] for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list): precision.append(float(ac_tp) / (ac_tp + ac_fp)) recall.append(float(ac_tp) / count) one_class_ap = 0.0 if self.map_type == '11point': max_precisions = [0.] * 11 start_idx = len(precision) - 1 for j in range(10, -1, -1): for i in range(start_idx, -1, -1): if recall[i] < float(j) / 10.: start_idx = i if j > 0: max_precisions[j - 1] = max_precisions[j] break else: if max_precisions[j] < precision[i]: max_precisions[j] = precision[i] one_class_ap = sum(max_precisions) / 11. mAP += one_class_ap valid_cnt += 1 elif self.map_type == 'integral': import math prev_recall = 0. for i in range(len(precision)): recall_gap = math.fabs(recall[i] - prev_recall) if recall_gap > 1e-6: one_class_ap += precision[i] * recall_gap prev_recall = recall[i] mAP += one_class_ap valid_cnt += 1 else: logger.error("Unspported mAP type {}".format(self.map_type)) sys.exit(1) eval_results.append({ 'class': self.classes[valid_cnt - 1], 'ap': one_class_ap, 'precision': precision, 'recall': recall, }) self.eval_results = eval_results self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP def get_map(self): """ Get mAP result """ if self.mAP is None: logger.error("mAP is not calculated.") if self.classwise: # Compute per-category AP and PR curve try: from terminaltables import AsciiTable except Exception as e: logger.error( 'terminaltables not found, plaese install terminaltables. ' 'for example: `pip install terminaltables`.') raise e results_per_category = [] for eval_result in self.eval_results: results_per_category.append( (str(eval_result['class']), '{:0.3f}'.format(float(eval_result['ap'])))) draw_pr_curve( eval_result['precision'], eval_result['recall'], out_dir='voc_pr_curve', file_name='{}_precision_recall_curve.jpg'.format( eval_result['class'])) num_columns = min(6, len(results_per_category) * 2) results_flatten = list(itertools.chain(*results_per_category)) headers = ['category', 'AP'] * (num_columns // 2) results_2d = itertools.zip_longest(* [ results_flatten[i::num_columns] for i in range(num_columns) ]) table_data = [headers] table_data += [result for result in results_2d] table = AsciiTable(table_data) logger.info('Per-category of VOC AP: \n{}'.format(table.table)) logger.info( "per-category PR curve has output to voc_pr_curve folder.") return self.mAP def _get_tp_fp_accum(self, score_pos_list): """ Calculate accumulating true/false positive results from [score, pos] records """ sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True) accum_tp = 0 accum_fp = 0 accum_tp_list = [] accum_fp_list = [] for (score, pos) in sorted_list: accum_tp += int(pos) accum_tp_list.append(accum_tp) accum_fp += 1 - int(pos) accum_fp_list.append(accum_fp) return accum_tp_list, accum_fp_list def ap_per_class(tp, conf, pred_cls, target_cls): """ Computes the average precision, given the recall and precision curves. Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics. Args: tp (list): True positives. conf (list): Objectness value from 0-1. pred_cls (list): Predicted object classes. target_cls (list): Target object classes. """ tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array( pred_cls), np.array(target_cls) # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0)) # Create Precision-Recall curve and compute AP for each class ap, p, r = [], [], [] for c in unique_classes: i = pred_cls == c n_gt = sum(target_cls == c) # Number of ground truth objects n_p = sum(i) # Number of predicted objects if (n_p == 0) and (n_gt == 0): continue elif (n_p == 0) or (n_gt == 0): ap.append(0) r.append(0) p.append(0) else: # Accumulate FPs and TPs fpc = np.cumsum(1 - tp[i]) tpc = np.cumsum(tp[i]) # Recall recall_curve = tpc / (n_gt + 1e-16) r.append(tpc[-1] / (n_gt + 1e-16)) # Precision precision_curve = tpc / (tpc + fpc) p.append(tpc[-1] / (tpc[-1] + fpc[-1])) # AP from recall-precision curve ap.append(compute_ap(recall_curve, precision_curve)) return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array( p) def compute_ap(recall, precision): """ Computes the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-rcnn. Args: recall (list): The recall curve. precision (list): The precision curve. Returns: The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap