architecture: PicoDet pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x1_0_pretrained.pdparams export_post_process: False # Whether post-processing is included in the network when export model. PicoDet: backbone: ESNet neck: CSPPAN head: PicoHead ESNet: scale: 1.0 feature_maps: [4, 11, 14] act: hard_swish channel_ratio: [0.875, 0.5, 1.0, 0.625, 0.5, 0.75, 0.625, 0.625, 0.5, 0.625, 1.0, 0.625, 0.75] CSPPAN: out_channels: 128 use_depthwise: True num_csp_blocks: 1 num_features: 4 PicoHead: conv_feat: name: PicoFeat feat_in: 128 feat_out: 128 num_convs: 4 num_fpn_stride: 4 norm_type: bn share_cls_reg: True fpn_stride: [8, 16, 32, 64] feat_in_chan: 128 prior_prob: 0.01 reg_max: 7 cell_offset: 0.5 loss_class: name: VarifocalLoss use_sigmoid: True iou_weighted: True loss_weight: 1.0 loss_dfl: name: DistributionFocalLoss loss_weight: 0.25 loss_bbox: name: GIoULoss loss_weight: 2.0 assigner: name: SimOTAAssigner candidate_topk: 10 iou_weight: 6 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.025 nms_threshold: 0.6