# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3))) if parent_path not in sys.path: sys.path.append(parent_path) import time import numpy as np import datetime from collections import deque import paddle from paddle import fluid from ppdet.experimental import mixed_precision_context from ppdet.core.workspace import load_config, merge_config, create, register from ppdet.data.reader import create_reader from ppdet.utils import dist_utils from ppdet.utils.eval_utils import parse_fetches, eval_run from ppdet.utils.stats import TrainingStats from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode import ppdet.utils.checkpoint as checkpoint from paddleslim.analysis import flops, TableLatencyEvaluator from paddleslim.nas import SANAS import search_space import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) @register class Constraint(object): """ Constraint for nas """ def __init__(self, ctype, max_constraint=None, min_constraint=None, table_file=None): super(Constraint, self).__init__() self.ctype = ctype self.max_constraint = max_constraint self.min_constraint = min_constraint self.table_file = table_file def compute_constraint(self, program): if self.ctype == 'flops': model_status = flops(program) elif self.ctype == 'latency': assert os.path.exists( self.table_file ), "latency constraint must have latency table, please check whether table file exist!" model_latency = TableLatencyEvaluator(self.table_file) model_status = model_latency.latency(program, only_conv=True) else: raise NotImplementedError( "{} constraint is NOT support!!! Now PaddleSlim support flops constraint and latency constraint". format(self.ctype)) return model_status def get_bboxes_scores(result): bboxes = result['bbox'][0] gt_bbox = result['gt_bbox'][0] bbox_lengths = result['bbox'][1][0] gt_lengths = result['gt_bbox'][1][0] bbox_list = [] gt_box_list = [] for i in range(len(bbox_lengths)): num = bbox_lengths[i] for j in range(num): dt = bboxes[j] clsid, score, xmin, ymin, xmax, ymax = dt.tolist() im_shape = result['im_shape'][0][i].tolist() im_height, im_width = int(im_shape[0]), int(im_shape[1]) xmin *= im_width ymin *= im_height xmax *= im_width ymax *= im_height bbox_list.append([xmin, ymin, xmax, ymax, score]) faces_num_gt = 0 for i in range(len(gt_lengths)): num = gt_lengths[i] for j in range(num): gt = gt_bbox[j] xmin, ymin, xmax, ymax = gt.tolist() im_shape = result['im_shape'][0][i].tolist() im_height, im_width = int(im_shape[0]), int(im_shape[1]) xmin *= im_width ymin *= im_height xmax *= im_width ymax *= im_height gt_box_list.append([xmin, ymin, xmax, ymax]) faces_num_gt += 1 return gt_box_list, bbox_list, faces_num_gt def calculate_ap_py(results): def cal_iou(rect1, rect2): lt_x = max(rect1[0], rect2[0]) lt_y = max(rect1[1], rect2[1]) rb_x = min(rect1[2], rect2[2]) rb_y = min(rect1[3], rect2[3]) if (rb_x > lt_x) and (rb_y > lt_y): intersection = (rb_x - lt_x) * (rb_y - lt_y) else: return 0 area1 = (rect1[2] - rect1[0]) * (rect1[3] - rect1[1]) area2 = (rect2[2] - rect2[0]) * (rect2[3] - rect2[1]) intersection = min(intersection, area1, area2) union = area1 + area2 - intersection return float(intersection) / union def is_same_face(face_gt, face_pred): iou = cal_iou(face_gt, face_pred) return iou >= 0.5 def eval_single_image(faces_gt, faces_pred): pred_is_true = [False] * len(faces_pred) gt_been_pred = [False] * len(faces_gt) for i in range(len(faces_pred)): isface = False for j in range(len(faces_gt)): if gt_been_pred[j] == 0: isface = is_same_face(faces_gt[j], faces_pred[i]) if isface == 1: gt_been_pred[j] = True break pred_is_true[i] = isface return pred_is_true score_res_pair = {} faces_num_gt = 0 for t in results: gt_box_list, bbox_list, face_num_gt = get_bboxes_scores(t) faces_num_gt += face_num_gt pred_is_true = eval_single_image(gt_box_list, bbox_list) for i in range(0, len(pred_is_true)): now_score = bbox_list[i][-1] if now_score in score_res_pair: score_res_pair[now_score].append(int(pred_is_true[i])) else: score_res_pair[now_score] = [int(pred_is_true[i])] keys = score_res_pair.keys() keys = sorted(keys, reverse=True) tp_num = 0 predict_num = 0 precision_list = [] recall_list = [] for i in range(len(keys)): k = keys[i] v = score_res_pair[k] predict_num += len(v) tp_num += sum(v) recall = float(tp_num) / faces_num_gt precision_list.append(float(tp_num) / predict_num) recall_list.append(recall) ap = precision_list[0] * recall_list[0] for i in range(1, len(precision_list)): ap += precision_list[i] * (recall_list[i] - recall_list[i - 1]) return ap def main(): env = os.environ FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env if FLAGS.dist: trainer_id = int(env['PADDLE_TRAINER_ID']) import random local_seed = (99 + trainer_id) random.seed(local_seed) np.random.seed(local_seed) cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() main_arch = cfg.architecture if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # add NAS config = ([(cfg.search_space)]) server_address = (cfg.server_ip, cfg.server_port) load_checkpoint = FLAGS.resume_checkpoint if FLAGS.resume_checkpoint else None sa_nas = SANAS( config, server_addr=server_address, init_temperature=cfg.init_temperature, reduce_rate=cfg.reduce_rate, search_steps=cfg.search_steps, save_checkpoint=cfg.save_dir, load_checkpoint=load_checkpoint, is_server=cfg.is_server) start_iter = 0 train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num, cfg) eval_reader = create_reader(cfg.EvalReader) constraint = create('Constraint') for step in range(cfg.search_steps): logger.info('----->>> search step: {} <<<------'.format(step)) archs = sa_nas.next_archs()[0] # build program startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) if FLAGS.fp16: assert (getattr(model.backbone, 'norm_type', None) != 'affine_channel'), \ '--fp16 currently does not support affine channel, ' \ ' please modify backbone settings to use batch norm' with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx: inputs_def = cfg['TrainReader']['inputs_def'] feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = archs(feed_vars, 'train', cfg) loss = train_fetches['loss'] if FLAGS.fp16: loss *= ctx.get_loss_scale_var() lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) if FLAGS.fp16: loss /= ctx.get_loss_scale_var() current_constraint = constraint.compute_constraint(train_prog) logger.info('current steps: {}, constraint {}'.format( step, current_constraint)) if (constraint.max_constraint != None and current_constraint > constraint.max_constraint) or ( constraint.min_constraint != None and current_constraint < constraint.min_constraint): continue # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = archs(feed_vars, 'eval', cfg) eval_prog = eval_prog.clone(True) # When iterable mode, set set_sample_list_generator(eval_reader, place) eval_loader.set_sample_list_generator(eval_reader) extra_keys = ['im_id', 'im_shape', 'gt_bbox'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) # compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_optimizer_ops = False build_strategy.fuse_elewise_add_act_ops = True exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 if FLAGS.dist: dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog, train_prog) exec_strategy.num_threads = 1 exe.run(startup_prog) compiled_train_prog = fluid.CompiledProgram( train_prog).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) if FLAGS.eval: compiled_eval_prog = fluid.CompiledProgram(eval_prog) # When iterable mode, set set_sample_list_generator(train_reader, place) train_loader.set_sample_list_generator(train_reader) train_stats = TrainingStats(cfg.log_iter, train_keys) train_loader.start() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_iter) ap = 0 for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(compiled_train_prog, fetch_list=train_values) stats = { k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1]) } train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0): strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) if (it > 0 and it == cfg.max_iters - 1) and (not FLAGS.dist or trainer_id == 0): save_name = str( it) if it != cfg.max_iters - 1 else "model_final" checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) if FLAGS.eval: # evaluation results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls) ap = calculate_ap_py(results) train_loader.reset() eval_loader.reset() logger.info('rewards: ap is {}'.format(ap)) sa_nas.reward(float(ap)) current_best_tokens = sa_nas.current_info()['best_tokens'] logger.info("All steps end, the best BlazeFace-NAS structure is: ") sa_nas.tokens2arch(current_best_tokens) if __name__ == '__main__': enable_static_mode() parser = ArgsParser() parser.add_argument( "-r", "--resume_checkpoint", default=None, type=str, help="Checkpoint path for resuming training.") parser.add_argument( "--fp16", action='store_true', default=False, help="Enable mixed precision training.") parser.add_argument( "--loss_scale", default=8., type=float, help="Mixed precision training loss scale.") parser.add_argument( "--eval", action='store_true', default=True, help="Whether to perform evaluation in train") FLAGS = parser.parse_args() main()