# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import os import ast import argparse import numpy as np def argsparser(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--model_dir", type=str, default=None, help=("Directory include:'model.pdiparams', 'model.pdmodel', " "'infer_cfg.yml', created by tools/export_model.py."), required=True) parser.add_argument( "--image_file", type=str, default=None, help="Path of image file.") parser.add_argument( "--image_dir", type=str, default=None, help="Dir of image file, `image_file` has a higher priority.") parser.add_argument( "--batch_size", type=int, default=1, help="batch_size for inference.") parser.add_argument( "--video_file", type=str, default=None, help="Path of video file, `video_file` or `camera_id` has a highest priority." ) parser.add_argument( "--camera_id", type=int, default=-1, help="device id of camera to predict.") parser.add_argument( "--threshold", type=float, default=0.5, help="Threshold of score.") parser.add_argument( "--output_dir", type=str, default="output", help="Directory of output visualization files.") parser.add_argument( "--run_mode", type=str, default='paddle', help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)") parser.add_argument( "--device", type=str, default='cpu', help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU." ) parser.add_argument( "--use_gpu", type=ast.literal_eval, default=False, help="Deprecated, please use `--device`.") parser.add_argument( "--run_benchmark", type=ast.literal_eval, default=False, help="Whether to predict a image_file repeatedly for benchmark") parser.add_argument( "--enable_mkldnn", type=ast.literal_eval, default=False, help="Whether use mkldnn with CPU.") parser.add_argument( "--enable_mkldnn_bfloat16", type=ast.literal_eval, default=False, help="Whether use mkldnn bfloat16 inference with CPU.") parser.add_argument( "--cpu_threads", type=int, default=1, help="Num of threads with CPU.") parser.add_argument( "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.") parser.add_argument( "--trt_max_shape", type=int, default=1280, help="max_shape for TensorRT.") parser.add_argument( "--trt_opt_shape", type=int, default=640, help="opt_shape for TensorRT.") parser.add_argument( "--trt_calib_mode", type=bool, default=False, help="If the model is produced by TRT offline quantitative " "calibration, trt_calib_mode need to set True.") parser.add_argument( '--save_images', type=ast.literal_eval, default=True, help='Save visualization image results.') parser.add_argument( '--save_mot_txts', action='store_true', help='Save tracking results (txt).') parser.add_argument( '--save_mot_txt_per_img', action='store_true', help='Save tracking results (txt) for each image.') parser.add_argument( '--scaled', type=bool, default=False, help="Whether coords after detector outputs are scaled, False in JDE YOLOv3 " "True in general detector.") parser.add_argument( "--tracker_config", type=str, default=None, help=("tracker donfig")) parser.add_argument( "--reid_model_dir", type=str, default=None, help=("Directory include:'model.pdiparams', 'model.pdmodel', " "'infer_cfg.yml', created by tools/export_model.py.")) parser.add_argument( "--reid_batch_size", type=int, default=50, help="max batch_size for reid model inference.") parser.add_argument( '--use_dark', type=ast.literal_eval, default=True, help='whether to use darkpose to get better keypoint position predict ') parser.add_argument( "--action_file", type=str, default=None, help="Path of input file for action recognition.") parser.add_argument( "--window_size", type=int, default=50, help="Temporal size of skeleton feature for action recognition.") parser.add_argument( "--random_pad", type=ast.literal_eval, default=False, help="Whether do random padding for action recognition.") parser.add_argument( "--save_results", action='store_true', default=False, help="Whether save detection result to file using coco format") parser.add_argument( '--use_coco_category', action='store_true', default=False, help='Whether to use the coco format dictionary `clsid2catid`') parser.add_argument( "--slice_infer", action='store_true', help="Whether to slice the image and merge the inference results for small object detection." ) parser.add_argument( '--slice_size', nargs='+', type=int, default=[640, 640], help="Height of the sliced image.") parser.add_argument( "--overlap_ratio", nargs='+', type=float, default=[0.25, 0.25], help="Overlap height ratio of the sliced image.") parser.add_argument( "--combine_method", type=str, default='nms', help="Combine method of the sliced images' detection results, choose in ['nms', 'nmm', 'concat']." ) parser.add_argument( "--match_threshold", type=float, default=0.6, help="Combine method matching threshold.") parser.add_argument( "--match_metric", type=str, default='ios', help="Combine method matching metric, choose in ['iou', 'ios'].") return parser class Times(object): def __init__(self): self.time = 0. # start time self.st = 0. # end time self.et = 0. def start(self): self.st = time.time() def end(self, repeats=1, accumulative=True): self.et = time.time() if accumulative: self.time += (self.et - self.st) / repeats else: self.time = (self.et - self.st) / repeats def reset(self): self.time = 0. self.st = 0. self.et = 0. def value(self): return round(self.time, 4) class Timer(Times): def __init__(self, with_tracker=False): super(Timer, self).__init__() self.with_tracker = with_tracker self.preprocess_time_s = Times() self.inference_time_s = Times() self.postprocess_time_s = Times() self.tracking_time_s = Times() self.img_num = 0 def info(self, average=False): pre_time = self.preprocess_time_s.value() infer_time = self.inference_time_s.value() post_time = self.postprocess_time_s.value() track_time = self.tracking_time_s.value() total_time = pre_time + infer_time + post_time if self.with_tracker: total_time = total_time + track_time total_time = round(total_time, 4) print("------------------ Inference Time Info ----------------------") print("total_time(ms): {}, img_num: {}".format(total_time * 1000, self.img_num)) preprocess_time = round(pre_time / max(1, self.img_num), 4) if average else pre_time postprocess_time = round(post_time / max(1, self.img_num), 4) if average else post_time inference_time = round(infer_time / max(1, self.img_num), 4) if average else infer_time tracking_time = round(track_time / max(1, self.img_num), 4) if average else track_time average_latency = total_time / max(1, self.img_num) qps = 0 if total_time > 0: qps = 1 / average_latency print("average latency time(ms): {:.2f}, QPS: {:2f}".format( average_latency * 1000, qps)) if self.with_tracker: print( "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}". format(preprocess_time * 1000, inference_time * 1000, postprocess_time * 1000, tracking_time * 1000)) else: print( "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}". format(preprocess_time * 1000, inference_time * 1000, postprocess_time * 1000)) def report(self, average=False): dic = {} pre_time = self.preprocess_time_s.value() infer_time = self.inference_time_s.value() post_time = self.postprocess_time_s.value() track_time = self.tracking_time_s.value() dic['preprocess_time_s'] = round(pre_time / max(1, self.img_num), 4) if average else pre_time dic['inference_time_s'] = round(infer_time / max(1, self.img_num), 4) if average else infer_time dic['postprocess_time_s'] = round(post_time / max(1, self.img_num), 4) if average else post_time dic['img_num'] = self.img_num total_time = pre_time + infer_time + post_time if self.with_tracker: dic['tracking_time_s'] = round(track_time / max(1, self.img_num), 4) if average else track_time total_time = total_time + track_time dic['total_time_s'] = round(total_time, 4) return dic def get_current_memory_mb(): """ It is used to Obtain the memory usage of the CPU and GPU during the running of the program. And this function Current program is time-consuming. """ import pynvml import psutil import GPUtil gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0)) pid = os.getpid() p = psutil.Process(pid) info = p.memory_full_info() cpu_mem = info.uss / 1024. / 1024. gpu_mem = 0 gpu_percent = 0 gpus = GPUtil.getGPUs() if gpu_id is not None and len(gpus) > 0: gpu_percent = gpus[gpu_id].load pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem = meminfo.used / 1024. / 1024. return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4) def multiclass_nms(bboxs, num_classes, match_threshold=0.6, match_metric='iou'): final_boxes = [] for c in range(num_classes): idxs = bboxs[:, 0] == c if np.count_nonzero(idxs) == 0: continue r = nms(bboxs[idxs, 1:], match_threshold, match_metric) final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1)) return final_boxes def nms(dets, match_threshold=0.6, match_metric='iou'): """ Apply NMS to avoid detecting too many overlapping bounding boxes. Args: dets: shape [N, 5], [score, x1, y1, x2, y2] match_metric: 'iou' or 'ios' match_threshold: overlap thresh for match metric. """ if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int32) for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h if match_metric == 'iou': union = iarea + areas[j] - inter match_value = inter / union elif match_metric == 'ios': smaller = min(iarea, areas[j]) match_value = inter / smaller else: raise ValueError() if match_value >= match_threshold: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets coco_clsid2catid = { 0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25, 24: 27, 25: 28, 26: 31, 27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40, 36: 41, 37: 42, 38: 43, 39: 44, 40: 46, 41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53, 48: 54, 49: 55, 50: 56, 51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65, 60: 67, 61: 70, 62: 72, 63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81, 72: 82, 73: 84, 74: 85, 75: 86, 76: 87, 77: 88, 78: 89, 79: 90 }