# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn.functional as F from paddle import ParamAttr import paddle.nn as nn from paddle.regularizer import L2Decay from ppdet.core.workspace import register, serializable from ..shape_spec import ShapeSpec __all__ = ['HRFPN'] @register class HRFPN(nn.Layer): """ Args: in_channels (list): number of input feature channels from backbone out_channel (int): number of output feature channels share_conv (bool): whether to share conv for different layers' reduction extra_stage (int): add extra stage for returning HRFPN fpn_feats spatial_scales (list): feature map scaling factor """ def __init__(self, in_channels=[18, 36, 72, 144], out_channel=256, share_conv=False, extra_stage=1, spatial_scales=[1. / 4, 1. / 8, 1. / 16, 1. / 32]): super(HRFPN, self).__init__() in_channel = sum(in_channels) self.in_channel = in_channel self.out_channel = out_channel self.share_conv = share_conv for i in range(extra_stage): spatial_scales = spatial_scales + [spatial_scales[-1] / 2.] self.spatial_scales = spatial_scales self.num_out = len(self.spatial_scales) self.reduction = nn.Conv2D( in_channels=in_channel, out_channels=out_channel, kernel_size=1, weight_attr=ParamAttr(name='hrfpn_reduction_weights'), bias_attr=False) if share_conv: self.fpn_conv = nn.Conv2D( in_channels=out_channel, out_channels=out_channel, kernel_size=3, padding=1, weight_attr=ParamAttr(name='fpn_conv_weights'), bias_attr=False) else: self.fpn_conv = [] for i in range(self.num_out): conv_name = "fpn_conv_" + str(i) conv = self.add_sublayer( conv_name, nn.Conv2D( in_channels=out_channel, out_channels=out_channel, kernel_size=3, padding=1, weight_attr=ParamAttr(name=conv_name + "_weights"), bias_attr=False)) self.fpn_conv.append(conv) def forward(self, body_feats): num_backbone_stages = len(body_feats) outs = [] outs.append(body_feats[0]) # resize for i in range(1, num_backbone_stages): resized = F.interpolate( body_feats[i], scale_factor=2**i, mode='bilinear') outs.append(resized) # concat out = paddle.concat(outs, axis=1) assert out.shape[ 1] == self.in_channel, 'in_channel should be {}, be received {}'.format( out.shape[1], self.in_channel) # reduction out = self.reduction(out) # conv outs = [out] for i in range(1, self.num_out): outs.append(F.avg_pool2d(out, kernel_size=2**i, stride=2**i)) outputs = [] for i in range(self.num_out): conv_func = self.fpn_conv if self.share_conv else self.fpn_conv[i] conv = conv_func(outs[i]) outputs.append(conv) fpn_feats = [outputs[k] for k in range(self.num_out)] return fpn_feats @classmethod def from_config(cls, cfg, input_shape): return { 'in_channels': [i.channels for i in input_shape], 'spatial_scales': [1.0 / i.stride for i in input_shape], } @property def out_shape(self): return [ ShapeSpec( channels=self.out_channel, stride=1. / s) for s in self.spatial_scales ]