简体中文 | [English](README_en.md)

**飞桨目标检测开发套件,端到端地完成从训练到部署的全流程目标检测应用。**

## 🔥 热门活动 🎊YOLO Vision世界学术交流大会🎊 PaddleDetection受邀参与首个以YOLO为主题的YOLO Vision世界大会,与全球AI领先开发者学习交流,欢迎大家报名参加! - ⏰时间:9月27日 - 👨‍🏫演讲主题:PaddleDetection Toolkit and PP-YOLO Series - 💎圆桌论坛:Open Source Projects Enabling the Future of Computer Vision AI **⛓报名链接:https://ultralytics.com/yolo-vision** - 🔮彩蛋:8月26日 PaddleDetection发布YOLO系列全家族,包括YOLOv5/X/v6/v7与自研的PP-YOLOE、PP-YOLOE+ - 🗳项目链接:https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/docs/feature_models/YOLOSERIES_MODEL.md
## 产品动态 - 🔥 **2022.8.26:PaddleDetection发布[release/2.5版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5)** - 🗳 特色模型: - 发布[PP-YOLOE+](configs/ppyoloe),最高精度提升2.4% mAP,达到54.9% mAP,模型训练收敛速度提升3.75倍,端到端预测速度最高提升2.3倍;多个下游任务泛化性提升 - 发布[PicoDet-NPU](configs/picodet)模型,支持模型全量化部署;新增[PicoDet](configs/picodet)版面分析模型 - 发布[PP-TinyPose升级版](./configs/keypoint/tiny_pose/)增强版,在健身、舞蹈等场景精度提升9.1% AP,支持侧身、卧躺、跳跃、高抬腿等非常规动作 - 🔮 场景能力: - 发布行人分析工具[PP-Human v2](./deploy/pipeline),新增打架、打电话、抽烟、闯入四大行为识别,底层算法性能升级,覆盖行人检测、跟踪、属性三类核心算法能力,提供保姆级全流程开发及模型优化策略,支持在线视频流输入 - 首次发布[PP-Vehicle](./deploy/pipeline),提供车牌识别、车辆属性分析(颜色、车型)、车流量统计以及违章检测四大功能,兼容图片、在线视频流、视频输入,提供完善的二次开发文档教程 - 💡 前沿算法: - 全面覆盖的[YOLO家族](docs/feature_models/YOLOSERIES_MODEL.md)经典与最新模型代码库[PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO): 包括YOLOv3,百度飞桨自研的实时高精度目标检测模型PP-YOLOE,以及前沿检测算法YOLOv4、YOLOv5、YOLOX,YOLOv6及YOLOv7 - 新增基于[ViT](configs/vitdet)骨干网络高精度检测模型,COCO数据集精度达到55.7% mAP;新增[OC-SORT](configs/mot/ocsort)多目标跟踪模型;新增[ConvNeXt](configs/convnext)骨干网络 - 📋 产业范例:新增[智能健身](https://aistudio.baidu.com/aistudio/projectdetail/4385813)、[打架识别](https://aistudio.baidu.com/aistudio/projectdetail/4086987?channelType=0&channel=0)、[来客分析](https://aistudio.baidu.com/aistudio/projectdetail/4230123?channelType=0&channel=0)、车辆结构化范例 - 2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4) - 发布高精度云边一体SOTA目标检测模型[PP-YOLOE](configs/ppyoloe),提供s/m/l/x版本,l版本COCO test2017数据集精度51.6%,V100预测速度78.1 FPS,支持混合精度训练,训练较PP-YOLOv2加速33%,全系列多尺度模型,满足不同硬件算力需求,可适配服务器、边缘端GPU及其他服务器端AI加速卡。 - 发布边缘端和CPU端超轻量SOTA目标检测模型[PP-PicoDet增强版](configs/picodet),精度提升2%左右,CPU预测速度提升63%,新增参数量0.7M的PicoDet-XS模型,提供模型稀疏化和量化功能,便于模型加速,各类硬件无需单独开发后处理模块,降低部署门槛。 - 发布实时行人分析工具[PP-Human](deploy/pipeline),支持行人跟踪、人流量统计、人体属性识别与摔倒检测四大能力,基于真实场景数据特殊优化,精准识别各类摔倒姿势,适应不同环境背景、光线及摄像角度。 - 新增[YOLOX](configs/yolox)目标检测模型,支持nano/tiny/s/m/l/x版本,x版本COCO val2017数据集精度51.8%。 - [更多版本发布](https://github.com/PaddlePaddle/PaddleDetection/releases) ## 简介 **PaddleDetection**为基于飞桨PaddlePaddle的端到端目标检测套件,内置**30+模型算法**及**250+预训练模型**,覆盖**目标检测、实例分割、跟踪、关键点检测**等方向,其中包括**服务器端和移动端高精度、轻量级**产业级SOTA模型、冠军方案和学术前沿算法,并提供配置化的网络模块组件、十余种数据增强策略和损失函数等高阶优化支持和多种部署方案,在打通数据处理、模型开发、训练、压缩、部署全流程的基础上,提供丰富的案例及教程,加速算法产业落地应用。
## 特性 - **模型丰富**: 包含**目标检测**、**实例分割**、**人脸检测**、****关键点检测****、**多目标跟踪**等**250+个预训练模型**,涵盖多种**全球竞赛冠军**方案。 - **使用简洁**:模块化设计,解耦各个网络组件,开发者轻松搭建、试用各种检测模型及优化策略,快速得到高性能、定制化的算法。 - **端到端打通**: 从数据增强、组网、训练、压缩、部署端到端打通,并完备支持**云端**/**边缘端**多架构、多设备部署。 - **高性能**: 基于飞桨的高性能内核,模型训练速度及显存占用优势明显。支持FP16训练, 支持多机训练。
## 技术交流 - 如果你发现任何PaddleDetection存在的问题或者是建议, 欢迎通过[GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues)给我们提issues。 - **欢迎加入PaddleDetection 微信用户群(扫码填写问卷即可入群)** - **入群福利 💎:获取PaddleDetection团队整理的重磅学习大礼包🎁** - 📊 福利一:获取飞桨联合业界企业整理的开源数据集 - 👨‍🏫 福利二:获取PaddleDetection历次发版直播视频与最新直播咨询 - 🗳 福利三:获取垂类场景预训练模型集合,包括工业、安防、交通等5+行业场景 - 🗂 福利四:获取10+全流程产业实操范例,覆盖火灾烟雾检测、人流量计数等产业高频场景
## 套件结构概览
Architectures Backbones Components Data Augmentation
    Object Detection
    • Faster RCNN
    • FPN
    • Cascade-RCNN
    • PSS-Det
    • RetinaNet
    • YOLOv3
    • YOLOv5
    • YOLOv6
    • YOLOv7
    • PP-YOLOv1/v2
    • PP-YOLO-Tiny
    • PP-YOLOE
    • PP-YOLOE+
    • YOLOX
    • SSD
    • CenterNet
    • FCOS
    • TTFNet
    • TOOD
    • GFL
    • PP-PicoDet
    • DETR
    • Deformable DETR
    • Swin Transformer
    • Sparse RCNN
    Instance Segmentation
    • Mask RCNN
    • Cascade Mask RCNN
    • SOLOv2
    Face Detection
    • BlazeFace
    Multi-Object-Tracking
    • JDE
    • FairMOT
    • DeepSORT
    • ByteTrack
    • OC-SORT
    KeyPoint-Detection
    • HRNet
    • HigherHRNet
    • Lite-HRNet
    • PP-TinyPose
Details
  • ResNet(&vd)
  • Res2Net(&vd)
  • CSPResNet
  • SENet
  • Res2Net
  • HRNet
  • Lite-HRNet
  • DarkNet
  • CSPDarkNet
  • MobileNetv1/v3
  • ShuffleNet
  • GhostNet
  • BlazeNet
  • DLA
  • HardNet
  • LCNet
  • ESNet
  • Swin-Transformer
  • ConvNeXt
  • Vision Transformer
Common
  • Sync-BN
  • Group Norm
  • DCNv2
  • EMA
KeyPoint
  • DarkPose
FPN
  • BiFPN
  • CSP-PAN
  • Custom-PAN
  • ES-PAN
  • HRFPN
Loss
  • Smooth-L1
  • GIoU/DIoU/CIoU
  • IoUAware
  • Focal Loss
  • CT Focal Loss
  • VariFocal Loss
Post-processing
  • SoftNMS
  • MatrixNMS
Speed
  • FP16 training
  • Multi-machine training
Details
  • Resize
  • Lighting
  • Flipping
  • Expand
  • Crop
  • Color Distort
  • Random Erasing
  • Mixup
  • AugmentHSV
  • Mosaic
  • Cutmix
  • Grid Mask
  • Auto Augment
  • Random Perspective
## 模型性能概览
云端模型性能对比 各模型结构和骨干网络的代表模型在COCO数据集上精度mAP和单卡Tesla V100上预测速度(FPS)对比图。
**说明:** - `ViT`为`ViT-Cascade-Faster-RCNN`模型,COCO数据集mAP高达55.7% - `Cascade-Faster-RCNN`为`Cascade-Faster-RCNN-ResNet50vd-DCN`,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS - `PP-YOLOE`是对`PP-YOLO v2`模型的进一步优化,L版本在COCO数据集mAP为51.6%,Tesla V100预测速度78.1FPS - `PP-YOLOE+`是对`PPOLOE`模型的进一步优化,L版本在COCO数据集mAP为53.3%,Tesla V100预测速度78.1FPS - [`YOLOX`](configs/yolox)和[`YOLOv5`](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5)均为基于PaddleDetection复现算法,`YOLOv5`代码在[`PaddleYOLO`](https://github.com/PaddlePaddle/PaddleYOLO)中,参照[YOLOSERIES_MODEL](docs/feature_models/YOLOSERIES_MODEL.md) - 图中模型均可在[模型库](#模型库)中获取
移动端模型性能对比 各移动端模型在COCO数据集上精度mAP和高通骁龙865处理器上预测速度(FPS)对比图。
**说明:** - 测试数据均使用高通骁龙865(4\*A77 + 4\*A55)处理器batch size为1, 开启4线程测试,测试使用NCNN预测库,测试脚本见[MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark) - [PP-PicoDet](configs/picodet)及[PP-YOLO-Tiny](configs/ppyolo)为PaddleDetection自研模型,其余模型PaddleDetection暂未提供
## 模型库
1. 通用检测 #### [PP-YOLOE+](./configs/ppyoloe)系列 推荐场景:Nvidia V100, T4等云端GPU和Jetson系列等边缘端设备 | 模型名称 | COCO精度(mAP) | V100 TensorRT FP16速度(FPS) | 配置文件 | 模型下载 | |:---------- |:-----------:|:-------------------------:|:-----------------------------------------------------:|:------------------------------------------------------------------------------------:| | PP-YOLOE+_s | 43.9 | 333.3 | [链接](configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams) | | PP-YOLOE+_m | 50.0 | 208.3 | [链接](configs/ppyoloe/ppyoloe_plus_crn_m_80e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_m_80e_coco.pdparams) | | PP-YOLOE+_l | 53.3 | 149.2 | [链接](configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_m_80e_coco.pdparams) | | PP-YOLOE+_x | 54.9 | 95.2 | [链接](configs/ppyoloe/ppyoloe_plus_crn_x_80e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_x_80e_coco.pdparams) | #### [PP-PicoDet](./configs/picodet)系列 推荐场景:ARM CPU(RK3399, 树莓派等) 和NPU(比特大陆,晶晨等)移动端芯片和x86 CPU设备 | 模型名称 | COCO精度(mAP) | 骁龙865 四线程速度(ms) | 配置文件 | 模型下载 | |:---------- |:-----------:|:---------------:|:---------------------------------------------------:|:---------------------------------------------------------------------------------:| | PicoDet-XS | 23.5 | 7.81 | [链接](configs/picodet/picodet_xs_320_coco_lcnet.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) | | PicoDet-S | 29.1 | 9.56 | [链接](configs/picodet/picodet_s_320_coco_lcnet.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams) | | PicoDet-M | 34.4 | 17.68 | [链接](configs/picodet/picodet_m_320_coco_lcnet.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams) | | PicoDet-L | 36.1 | 25.21 | [链接](configs/picodet/picodet_l_320_coco_lcnet.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams) | #### 前沿检测算法 | 模型名称 | COCO精度(mAP) | V100 TensorRT FP16速度(FPS) | 配置文件 | 模型下载 | |:------------------------------------------------------------------ |:-----------:|:-------------------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:| | [YOLOX-l](configs/yolox) | 50.1 | 107.5 | [链接](configs/yolox/yolox_l_300e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams) | | [YOLOv5-l](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5) | 48.6 | 136.0 | [链接](https://github.com/nemonameless/PaddlePaddle/PaddleYOLO/blob/develop/configs/yolov5/yolov5_l_300e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) | | [YOLOv7-l](https://github.com/nemonameless/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7) | 51.0 | 135.0 | [链接](https://github.com/nemonameless/PaddlePaddle/PaddleYOLO/blob/develop/configs/yolov7/yolov7_l_300e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/yolov7_l_300e_coco.pdparams) | **注意:** - `YOLOv5`和`YOLOv7`代码在[`PaddleYOLO`](https://github.com/PaddlePaddle/PaddleYOLO)中,为基于`PaddleDetection`复现的算法,可参照[YOLOSERIES_MODEL](docs/feature_models/YOLOSERIES_MODEL.md)。 #### 其他通用检测模型 [文档链接](docs/MODEL_ZOO_cn.md)
2. 实例分割 | 模型名称 | 模型简介 | 推荐场景 | COCO精度(mAP) | 配置文件 | 模型下载 | |:----------------- |:------------ |:---- |:--------------------------------:|:---------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:| | Mask RCNN | 两阶段实例分割算法 | 云边端 | box AP: 41.4
mask AP: 37.5 | [链接](configs/mask_rcnn/mask_rcnn_r50_vd_fpn_2x_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams) | | Cascade Mask RCNN | 两阶段实例分割算法 | 云边端 | box AP: 45.7
mask AP: 39.7 | [链接](configs/mask_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | | SOLOv2 | 轻量级单阶段实例分割算法 | 云边端 | mask AP: 38.0 | [链接](configs/solov2/solov2_r50_fpn_3x_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_3x_coco.pdparams) |
3. 关键点检测 | 模型名称 | 模型简介 | 推荐场景 | COCO精度(AP) | 速度 | 配置文件 | 模型下载 | |:------------------------------------------- |:---------------------------------------------------------------- |:---------------------------------- |:----------:|:-----------------------:|:-------------------------------------------------------:|:---------------------------------------------------------------------------------------:| | HRNet-w32 + DarkPose |
top-down 关键点检测算法
输入尺寸384x288
|
云边端
| 78.3 | T4 TensorRT FP16 2.96ms | [链接](configs/keypoint/hrnet/dark_hrnet_w32_384x288.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams) | | HRNet-w32 + DarkPose | top-down 关键点检测算法
输入尺寸256x192 | 云边端 | 78.0 | T4 TensorRT FP16 1.75ms | [链接](configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_256x192.pdparams) | | [PP-TinyPose](./configs/keypoint/tiny_pose) | 轻量级关键点算法
输入尺寸256x192 | 移动端 | 68.8 | 骁龙865 四线程 6.30ms | [链接](configs/keypoint/tiny_pose/tinypose_256x192.yml) | [下载地址](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | | [PP-TinyPose](./configs/keypoint/tiny_pose) | 轻量级关键点算法
输入尺寸128x96 | 移动端 | 58.1 | 骁龙865 四线程 2.37ms | [链接](configs/keypoint/tiny_pose/tinypose_128x96.yml) | [下载地址](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | #### 其他关键点检测模型 [文档链接](configs/keypoint)
4. 多目标跟踪PP-Tracking | 模型名称 | 模型简介 | 推荐场景 | 精度 | 配置文件 | 模型下载 | |:--------- |:------------------------ |:---------------------------------- |:----------------------:|:---------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:| | ByteTrack | SDE多目标跟踪算法 仅包含检测模型 | 云边端 | MOT-17 test: 78.4 | [链接](configs/mot/bytetrack/bytetrack_yolox.yml) | [下载地址](https://bj.bcebos.com/v1/paddledet/models/mot/yolox_x_24e_800x1440_mix_det.pdparams) | | FairMOT | JDE多目标跟踪算法 多任务联合学习方法 | 云边端 | MOT-16 test: 75.0 | [链接](configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams) | | OC-SORT | SDE多目标跟踪算法 仅包含检测模型 | 云边端 | MOT-17 half val: 75.5 | [链接](configs/mot/ocsort/ocsort_yolox.yml) | [下载地址](https://bj.bcebos.com/v1/paddledet/models/mot/yolox_x_24e_800x1440_mix_mot_ch.pdparams) | #### 其他多目标跟踪模型 [文档链接](configs/mot)
5. 产业级实时行人分析工具PP-Human | 任务 | 端到端速度(ms)| 模型方案 | 模型体积 | | :---------: | :-------: | :------: |:------: | | 行人检测(高精度) | 25.1ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | 182M | | 行人检测(轻量级) | 16.2ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip) | 27M | | 行人跟踪(高精度) | 31.8ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | 182M | | 行人跟踪(轻量级) | 21.0ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip) | 27M | | 属性识别(高精度) | 单人8.5ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[属性识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_small_person_attribute_954_infer.zip) | 目标检测:182M
属性识别:86M | | 属性识别(轻量级) | 单人7.1ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[属性识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.zip) | 目标检测:182M
属性识别:86M | | 摔倒识别 | 单人10ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[关键点检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip)
[基于关键点行为识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | 多目标跟踪:182M
关键点检测:101M
基于关键点行为识别:21.8M | | 闯入识别 | 31.8ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | 182M | | 打架识别 | 19.7ms | [视频分类](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | 90M | | 抽烟识别 | 单人15.1ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[基于人体id的目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppyoloe_crn_s_80e_smoking_visdrone.zip) | 目标检测:182M
基于人体id的目标检测:27M | | 打电话识别 | 单人ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[基于人体id的图像分类](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_calling_halfbody.zip) | 目标检测:182M
基于人体id的图像分类:45M | 点击模型方案中的模型即可下载指定模型 详细信息参考[文档](deploy/pipeline)
6. 产业级实时车辆分析工具PP-Vehicle | 任务 | 端到端速度(ms)| 模型方案 | 模型体积 | | :---------: | :-------: | :------: |:------: | | 车辆检测(高精度) | 25.7ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M | | 车辆检测(轻量级) | 13.2ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M | | 车辆跟踪(高精度) | 40ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M | | 车辆跟踪(轻量级) | 25ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M | | 车牌识别 | 4.68ms | [车牌检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_det_infer.tar.gz)
[车牌识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_rec_infer.tar.gz) | 车牌检测:3.9M
车牌字符识别: 12M | | 车辆属性 | 7.31ms | [属性识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip) | 7.2M | 点击模型方案中的模型即可下载指定模型 详细信息参考[文档](deploy/pipeline)
## 文档教程 ### 入门教程 - [安装说明](docs/tutorials/INSTALL_cn.md) - [快速体验](docs/tutorials/QUICK_STARTED_cn.md) - [数据准备](docs/tutorials/data/README.md) - [PaddleDetection全流程使用](docs/tutorials/GETTING_STARTED_cn.md) - [FAQ/常见问题汇总](docs/tutorials/FAQ) ### 进阶教程 - 参数配置 - [RCNN参数说明](docs/tutorials/config_annotation/faster_rcnn_r50_fpn_1x_coco_annotation.md) - [PP-YOLO参数说明](docs/tutorials/config_annotation/ppyolo_r50vd_dcn_1x_coco_annotation.md) - 模型压缩(基于[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)) - [剪裁/量化/蒸馏教程](configs/slim) - [推理部署](deploy/README.md) - [模型导出教程](deploy/EXPORT_MODEL.md) - [Paddle Inference部署](deploy/README.md) - [Python端推理部署](deploy/python) - [C++端推理部署](deploy/cpp) - [Paddle-Lite部署](deploy/lite) - [Paddle Serving部署](deploy/serving) - [ONNX模型导出](deploy/EXPORT_ONNX_MODEL.md) - [推理benchmark](deploy/BENCHMARK_INFER.md) - 进阶开发 - [数据处理模块](docs/advanced_tutorials/READER.md) - [新增检测模型](docs/advanced_tutorials/MODEL_TECHNICAL.md) - 二次开发教程 - [目标检测](docs/advanced_tutorials/customization/detection.md) - [关键点检测](docs/advanced_tutorials/customization/keypoint_detection.md) - [多目标跟踪](docs/advanced_tutorials/customization/pphuman_mot.md) - [行为识别](docs/advanced_tutorials/customization/action_recognotion/) - [属性识别](docs/advanced_tutorials/customization/pphuman_attribute.md) ### 课程专栏 - **【理论基础】[目标检测7日打卡营](https://aistudio.baidu.com/aistudio/education/group/info/1617):** 目标检测任务综述、RCNN系列目标检测算法详解、YOLO系列目标检测算法详解、PP-YOLO优化策略与案例分享、AnchorFree系列算法介绍和实践 - **【产业实践】[AI快车道产业级目标检测技术与应用](https://aistudio.baidu.com/aistudio/education/group/info/23670):** 目标检测超强目标检测算法矩阵、实时行人分析系统PP-Human、目标检测产业应用全流程拆解与实践 - **【行业特色】2022.3.26 [智慧城市行业七日课](https://aistudio.baidu.com/aistudio/education/group/info/25620):** 城市规划、城市治理、智慧政务、交通管理、社区治理 ### [产业实践范例教程](./industrial_tutorial/README.md) - [基于PP-Human v2的摔倒检测](https://aistudio.baidu.com/aistudio/projectdetail/4606001) - [基于PP-TinyPose增强版的智能健身动作识别](https://aistudio.baidu.com/aistudio/projectdetail/4385813) - [基于PP-Human的打架识别](https://aistudio.baidu.com/aistudio/projectdetail/4086987?contributionType=1) - [基于PP-PicoDet增强版的路面垃圾检测](https://aistudio.baidu.com/aistudio/projectdetail/3846170?channelType=0&channel=0) - [基于PP-PicoDet的通信塔识别及Android端部署](https://aistudio.baidu.com/aistudio/projectdetail/3561097) - [基于FairMOT实现人流量统计](https://aistudio.baidu.com/aistudio/projectdetail/2421822) - [基于PP-Human的来客分析案例教程](https://aistudio.baidu.com/aistudio/projectdetail/4537344) - [更多其他范例](./industrial_tutorial/README.md) ## 应用案例 - [安卓健身APP](https://github.com/zhiboniu/pose_demo_android) - [多目标跟踪系统GUI可视化界面](https://github.com/yangyudong2020/PP-Tracking_GUi) ## 第三方教程推荐 - [PaddleDetection在Windows下的部署(一)](https://zhuanlan.zhihu.com/p/268657833) - [PaddleDetection在Windows下的部署(二)](https://zhuanlan.zhihu.com/p/280206376) - [Jetson Nano上部署PaddleDetection经验分享](https://zhuanlan.zhihu.com/p/319371293) - [安全帽检测YOLOv3模型在树莓派上的部署](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/yolov3_for_raspi.md) - [使用SSD-MobileNetv1完成一个项目--准备数据集到完成树莓派部署](https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/ssd_mobilenet_v1_for_raspi.md) ## 版本更新 版本更新内容请参考[版本更新文档](docs/CHANGELOG.md) ## 许可证书 本项目的发布受[Apache 2.0 license](LICENSE)许可认证。 ## 贡献代码 我们非常欢迎你可以为PaddleDetection提供代码,也十分感谢你的反馈。 - 感谢[Mandroide](https://github.com/Mandroide)清理代码并且统一部分函数接口。 - 感谢[FL77N](https://github.com/FL77N/)贡献`Sparse-RCNN`模型。 - 感谢[Chen-Song](https://github.com/Chen-Song)贡献`Swin Faster-RCNN`模型。 - 感谢[yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) 开发PP-Tracking GUI界面 - 感谢Shigure19 开发PP-TinyPose健身APP - 感谢[manangoel99](https://github.com/manangoel99)贡献Wandb可视化方式 ## 引用 ``` @misc{ppdet2019, title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.}, author={PaddlePaddle Authors}, howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}}, year={2019} } ```