import paddle.v2.framework.core as core from paddle.v2.framework.op import Operator import numpy import paddle.v2 as paddle exit( 0 ) # FIXME(yuyang18): InferShape has been removed, this unittest should be changed until compile time is ready BATCH_SIZE = 100 scope = core.Scope() place = core.CPUPlace() # if you want to test GPU training, you can use gpu place # place = core.GPUPlace(0) dev_ctx = core.DeviceContext.create(place) init_net = core.Net.create() forward_net = core.Net.create() backward_net = None optimize_net = core.Net.create() def atomic_id(): id = 0 while True: yield id id += 1 uniq_id = atomic_id().next def data_layer(name, dims): var = scope.var(name) tensor = var.get_tensor() tensor.set_dims(dims) # 1 is batch size holder. return name def feed_data(name, data): assert isinstance(data, numpy.ndarray) tensor = scope.find_var(name).get_tensor() tensor.set_dims(data.shape) if data.dtype == numpy.dtype("int32"): tensor.alloc_int(place) elif data.dtype == numpy.dtype("float32"): tensor.alloc_float(place) else: raise ValueError("data type not supported") tensor.set(data, place) def grad_var_name(var_name): return var_name + "@GRAD" def sgd_optimizer(net, param_name, learning_rate=0.005): grad_name = grad_var_name(param_name) optimize_op = Operator( "sgd", param=param_name, grad=grad_name, param_out=param_name, learning_rate=learning_rate) net.append_op(optimize_op) # should use operator and add these to the init_network def init_param(net, param_name, dims): scope.var(param_name) op = Operator( "uniform_random", Out=param_name, dims=dims, min=-0.5, max=0.5, seed=10) op.infer_shape(scope) net.append_op(op) # fc_layer def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None): """ The fully connected layer. :param input: The name of input variable. :type input: str :param size: The size of fully connected layer. :param act: The name of activation. :param param: The attribute of learnable parameter which can be used to modify initialization mean and std of the parameter. :param bias: The attribute of bias. If set False, this layer does not have a bias. :param name: The name of this layer. If it is not set explictly, a name will be generated automatically. :return: The name of the output variable. """ if name is None: name = "fc_%d" % uniq_id() if not isinstance(name, str): raise ValueError("The name of a layer should be a string.") input_dims = scope.find_var(input).get_tensor().get_dims() w_name = param or name + ".w" init_param(net=init_net, param_name=w_name, dims=[input_dims[1], size]) sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01) pre_activation = name + ".mul.out" scope.var(pre_activation) mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation) net.append_op(mul_op) # create bias variable if needed if bias: bias_name = name + ".b" init_param(net=init_net, param_name=bias_name, dims=[size]) sgd_optimizer( net=optimize_net, param_name=bias_name, learning_rate=0.001) bias_out = name + ".rowwise_add.out" scope.var(bias_out) rowwise_append_op = Operator( "rowwise_add", X=pre_activation, b=bias_name, Out=bias_out) net.append_op(rowwise_append_op) pre_activation = bias_out activation_op = Operator(act, X=pre_activation, Y=name) net.append_op(activation_op) scope.var(name) net.infer_shape(scope) return name def cross_entropy_layer(net, input, label): cost_name = "cross_entropy_%d" % uniq_id() cross_entropy_op = Operator( "cross_entropy", X=input, Label=label, Y=cost_name) net.append_op(cross_entropy_op) scope.var(cost_name) net.infer_shape(scope) return cost_name def create_backward_net(forward_net): net = core.Operator.backward(forward_net, set()) for input in net.inputs()["all"]: var = scope.var(input) var.get_tensor() for output in net.outputs()["all"]: var = scope.var(output) var.get_tensor() return net def debug_print_op(op): print("===============" + op.type() + "==============") print("***inputs:***") for input in op.inputs()["all"]: print input, scope.find_var(input).get_tensor().get_dims() print("\n***outputs:***") for output in op.outputs()["all"]: print output, scope.find_var(output).get_tensor().get_dims() print("") print("") def set_cost(cost): cost_shape = numpy.array(scope.find_var(cost).get_tensor()).shape cost_grad = \ scope.find_var(grad_var_name(cost)).get_tensor() cost_grad.set_dims(cost_shape) cost_grad.alloc_float(place) cost_grad.set(numpy.ones(cost_shape).astype("float32"), place) def get_cost_mean(cost): cost_data = numpy.array(scope.find_var(cost).get_tensor()) return cost_data.sum() / len(cost_data) def error_rate(predict, label): predict_var = numpy.array(scope.find_var(predict).get_tensor()).argmax( axis=1) label = numpy.array(scope.find_var(label).get_tensor()) error_num = numpy.sum(predict_var != label) return error_num / float(len(label)) images = data_layer(name="pixel", dims=[BATCH_SIZE, 784]) labels = data_layer(name="label", dims=[BATCH_SIZE, 1]) fc1 = fc_layer(net=forward_net, input=images, size=100, act="sigmoid") fc2 = fc_layer(net=forward_net, input=fc1, size=100, act="sigmoid") predict = fc_layer(net=forward_net, input=fc2, size=10, act="softmax") cost = cross_entropy_layer(net=forward_net, input=predict, label=labels) init_net.complete_add_op(True) forward_net.complete_add_op(True) backward_net = create_backward_net(forward_net) optimize_net.complete_add_op(True) print(init_net) print(forward_net) print(backward_net) print(optimize_net) debug_print_op(forward_net) debug_print_op(backward_net) debug_print_op(optimize_net) train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=BATCH_SIZE) def test(cost_name): test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=BATCH_SIZE) cost = [] error = [] for data in test_reader(): image_data = numpy.array(map(lambda x: x[0], data)).astype("float32") label_data = numpy.array(map(lambda x: x[1], data)).astype("int32") label_data = numpy.expand_dims(label_data, axis=1) feed_data(images, image_data) feed_data(labels, label_data) forward_net.infer_shape(scope) forward_net.run(scope, dev_ctx) cost.append(get_cost_mean(cost_name)) error.append(error_rate(predict, "label")) print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str( sum(error) / float(len(error)))) PASS_NUM = 1 init_net.run(scope, dev_ctx) for pass_id in range(PASS_NUM): batch_id = 0 for data in train_reader(): image_data = numpy.array(map(lambda x: x[0], data)).astype("float32") label_data = numpy.array(map(lambda x: x[1], data)).astype("int32") label_data = numpy.expand_dims(label_data, axis=1) feed_data(images, image_data) feed_data(labels, label_data) forward_net.infer_shape(scope) forward_net.run(scope, dev_ctx) set_cost(cost) backward_net.infer_shape(scope) backward_net.run(scope, dev_ctx) optimize_net.run(scope, dev_ctx) if batch_id % 100 == 0: print("pass[" + str(pass_id) + "] batch_id[" + str(batch_id) + "]") test(cost) batch_id = batch_id + 1