architecture: YOLOX norm_type: sync_bn use_ema: True ema_decay: 0.9999 ema_decay_type: "exponential" act: silu find_unused_parameters: True depth_mult: 1.0 width_mult: 1.0 YOLOX: backbone: CSPDarkNet neck: YOLOCSPPAN head: YOLOXHead size_stride: 32 size_range: [15, 25] # multi-scale range [480*480 ~ 800*800] CSPDarkNet: arch: "X" return_idx: [2, 3, 4] depthwise: False YOLOCSPPAN: depthwise: False YOLOXHead: l1_epoch: 285 depthwise: False loss_weight: {cls: 1.0, obj: 1.0, iou: 5.0, l1: 1.0} assigner: name: SimOTAAssigner candidate_topk: 10 use_vfl: False nms: name: MultiClassNMS nms_top_k: 10000 keep_top_k: 1000 score_threshold: 0.001 nms_threshold: 0.65 # For speed while keep high mAP, you can modify 'nms_top_k' to 1000 and 'keep_top_k' to 100, the mAP will drop about 0.1%. # For high speed demo, you can modify 'score_threshold' to 0.25 and 'nms_threshold' to 0.45, but the mAP will drop a lot.