// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "core/general-server/general_model_service.pb.h" #include "core/general-server/op/general_infer_helper.h" #include "paddle_inference_api.h" // NOLINT #include #include #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include #include #include #include #include #include #include #include namespace baidu { namespace paddle_serving { namespace serving { class PPYOLOEOp : public baidu::paddle_serving::predictor::OpWithChannel { public: typedef std::vector TensorVector; DECLARE_OP(PPYOLOEOp); int inference(); private: // ppyoloe, picodet preprocess std::vector mean_ = {0.485f, 0.456f, 0.406f}; std::vector scale_ = {0.229f, 0.224f, 0.225f}; bool is_scale_ = true; int im_shape_h = 640; int im_shape_w = 640; float scale_factor_h = 1.0f; float scale_factor_w = 1.0f; void preprocess_det(const cv::Mat &img, float *data, float &scale_factor_h, float &scale_factor_w, int im_shape_h, int im_shape_w, const std::vector &mean, const std::vector &scale, const bool is_scale); // read pics cv::Mat Base2Mat(std::string &base64_data); std::string base64Decode(const char *Data, int DataByte); }; } // namespace serving } // namespace paddle_serving } // namespace baidu