# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this file contains helper methods for BBOX processing from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import random import math import cv2 def meet_emit_constraint(src_bbox, sample_bbox): center_x = (src_bbox[2] + src_bbox[0]) / 2 center_y = (src_bbox[3] + src_bbox[1]) / 2 if center_x >= sample_bbox[0] and \ center_x <= sample_bbox[2] and \ center_y >= sample_bbox[1] and \ center_y <= sample_bbox[3]: return True return False def clip_bbox(src_bbox): src_bbox[0] = max(min(src_bbox[0], 1.0), 0.0) src_bbox[1] = max(min(src_bbox[1], 1.0), 0.0) src_bbox[2] = max(min(src_bbox[2], 1.0), 0.0) src_bbox[3] = max(min(src_bbox[3], 1.0), 0.0) return src_bbox def bbox_area(src_bbox): if src_bbox[2] < src_bbox[0] or src_bbox[3] < src_bbox[1]: return 0. else: width = src_bbox[2] - src_bbox[0] height = src_bbox[3] - src_bbox[1] return width * height def is_overlap(object_bbox, sample_bbox): if object_bbox[0] >= sample_bbox[2] or \ object_bbox[2] <= sample_bbox[0] or \ object_bbox[1] >= sample_bbox[3] or \ object_bbox[3] <= sample_bbox[1]: return False else: return True def filter_and_process(sample_bbox, bboxes, labels, scores=None): new_bboxes = [] new_labels = [] new_scores = [] for i in range(len(bboxes)): new_bbox = [0, 0, 0, 0] obj_bbox = [bboxes[i][0], bboxes[i][1], bboxes[i][2], bboxes[i][3]] if not meet_emit_constraint(obj_bbox, sample_bbox): continue if not is_overlap(obj_bbox, sample_bbox): continue sample_width = sample_bbox[2] - sample_bbox[0] sample_height = sample_bbox[3] - sample_bbox[1] new_bbox[0] = (obj_bbox[0] - sample_bbox[0]) / sample_width new_bbox[1] = (obj_bbox[1] - sample_bbox[1]) / sample_height new_bbox[2] = (obj_bbox[2] - sample_bbox[0]) / sample_width new_bbox[3] = (obj_bbox[3] - sample_bbox[1]) / sample_height new_bbox = clip_bbox(new_bbox) if bbox_area(new_bbox) > 0: new_bboxes.append(new_bbox) new_labels.append([labels[i][0]]) if scores is not None: new_scores.append([scores[i][0]]) bboxes = np.array(new_bboxes) labels = np.array(new_labels) scores = np.array(new_scores) return bboxes, labels, scores def bbox_area_sampling(bboxes, labels, scores, target_size, min_size): new_bboxes = [] new_labels = [] new_scores = [] for i, bbox in enumerate(bboxes): w = float((bbox[2] - bbox[0]) * target_size) h = float((bbox[3] - bbox[1]) * target_size) if w * h < float(min_size * min_size): continue else: new_bboxes.append(bbox) new_labels.append(labels[i]) if scores is not None and scores.size != 0: new_scores.append(scores[i]) bboxes = np.array(new_bboxes) labels = np.array(new_labels) scores = np.array(new_scores) return bboxes, labels, scores def generate_sample_bbox(sampler): scale = np.random.uniform(sampler[2], sampler[3]) aspect_ratio = np.random.uniform(sampler[4], sampler[5]) aspect_ratio = max(aspect_ratio, (scale**2.0)) aspect_ratio = min(aspect_ratio, 1 / (scale**2.0)) bbox_width = scale * (aspect_ratio**0.5) bbox_height = scale / (aspect_ratio**0.5) xmin_bound = 1 - bbox_width ymin_bound = 1 - bbox_height xmin = np.random.uniform(0, xmin_bound) ymin = np.random.uniform(0, ymin_bound) xmax = xmin + bbox_width ymax = ymin + bbox_height sampled_bbox = [xmin, ymin, xmax, ymax] return sampled_bbox def generate_sample_bbox_square(sampler, image_width, image_height): scale = np.random.uniform(sampler[2], sampler[3]) aspect_ratio = np.random.uniform(sampler[4], sampler[5]) aspect_ratio = max(aspect_ratio, (scale**2.0)) aspect_ratio = min(aspect_ratio, 1 / (scale**2.0)) bbox_width = scale * (aspect_ratio**0.5) bbox_height = scale / (aspect_ratio**0.5) if image_height < image_width: bbox_width = bbox_height * image_height / image_width else: bbox_height = bbox_width * image_width / image_height xmin_bound = 1 - bbox_width ymin_bound = 1 - bbox_height xmin = np.random.uniform(0, xmin_bound) ymin = np.random.uniform(0, ymin_bound) xmax = xmin + bbox_width ymax = ymin + bbox_height sampled_bbox = [xmin, ymin, xmax, ymax] return sampled_bbox def data_anchor_sampling(bbox_labels, image_width, image_height, scale_array, resize_width): num_gt = len(bbox_labels) # np.random.randint range: [low, high) rand_idx = np.random.randint(0, num_gt) if num_gt != 0 else 0 if num_gt != 0: norm_xmin = bbox_labels[rand_idx][0] norm_ymin = bbox_labels[rand_idx][1] norm_xmax = bbox_labels[rand_idx][2] norm_ymax = bbox_labels[rand_idx][3] xmin = norm_xmin * image_width ymin = norm_ymin * image_height wid = image_width * (norm_xmax - norm_xmin) hei = image_height * (norm_ymax - norm_ymin) range_size = 0 area = wid * hei for scale_ind in range(0, len(scale_array) - 1): if area > scale_array[scale_ind] ** 2 and area < \ scale_array[scale_ind + 1] ** 2: range_size = scale_ind + 1 break if area > scale_array[len(scale_array) - 2]**2: range_size = len(scale_array) - 2 scale_choose = 0.0 if range_size == 0: rand_idx_size = 0 else: # np.random.randint range: [low, high) rng_rand_size = np.random.randint(0, range_size + 1) rand_idx_size = rng_rand_size % (range_size + 1) if rand_idx_size == range_size: min_resize_val = scale_array[rand_idx_size] / 2.0 max_resize_val = min(2.0 * scale_array[rand_idx_size], 2 * math.sqrt(wid * hei)) scale_choose = random.uniform(min_resize_val, max_resize_val) else: min_resize_val = scale_array[rand_idx_size] / 2.0 max_resize_val = 2.0 * scale_array[rand_idx_size] scale_choose = random.uniform(min_resize_val, max_resize_val) sample_bbox_size = wid * resize_width / scale_choose w_off_orig = 0.0 h_off_orig = 0.0 if sample_bbox_size < max(image_height, image_width): if wid <= sample_bbox_size: w_off_orig = np.random.uniform(xmin + wid - sample_bbox_size, xmin) else: w_off_orig = np.random.uniform(xmin, xmin + wid - sample_bbox_size) if hei <= sample_bbox_size: h_off_orig = np.random.uniform(ymin + hei - sample_bbox_size, ymin) else: h_off_orig = np.random.uniform(ymin, ymin + hei - sample_bbox_size) else: w_off_orig = np.random.uniform(image_width - sample_bbox_size, 0.0) h_off_orig = np.random.uniform(image_height - sample_bbox_size, 0.0) w_off_orig = math.floor(w_off_orig) h_off_orig = math.floor(h_off_orig) # Figure out top left coordinates. w_off = float(w_off_orig / image_width) h_off = float(h_off_orig / image_height) sampled_bbox = [ w_off, h_off, w_off + float(sample_bbox_size / image_width), h_off + float(sample_bbox_size / image_height) ] return sampled_bbox else: return 0 def jaccard_overlap(sample_bbox, object_bbox): if sample_bbox[0] >= object_bbox[2] or \ sample_bbox[2] <= object_bbox[0] or \ sample_bbox[1] >= object_bbox[3] or \ sample_bbox[3] <= object_bbox[1]: return 0 intersect_xmin = max(sample_bbox[0], object_bbox[0]) intersect_ymin = max(sample_bbox[1], object_bbox[1]) intersect_xmax = min(sample_bbox[2], object_bbox[2]) intersect_ymax = min(sample_bbox[3], object_bbox[3]) intersect_size = (intersect_xmax - intersect_xmin) * ( intersect_ymax - intersect_ymin) sample_bbox_size = bbox_area(sample_bbox) object_bbox_size = bbox_area(object_bbox) overlap = intersect_size / ( sample_bbox_size + object_bbox_size - intersect_size) return overlap def intersect_bbox(bbox1, bbox2): if bbox2[0] > bbox1[2] or bbox2[2] < bbox1[0] or \ bbox2[1] > bbox1[3] or bbox2[3] < bbox1[1]: intersection_box = [0.0, 0.0, 0.0, 0.0] else: intersection_box = [ max(bbox1[0], bbox2[0]), max(bbox1[1], bbox2[1]), min(bbox1[2], bbox2[2]), min(bbox1[3], bbox2[3]) ] return intersection_box def bbox_coverage(bbox1, bbox2): inter_box = intersect_bbox(bbox1, bbox2) intersect_size = bbox_area(inter_box) if intersect_size > 0: bbox1_size = bbox_area(bbox1) return intersect_size / bbox1_size else: return 0. def satisfy_sample_constraint(sampler, sample_bbox, gt_bboxes, satisfy_all=False): if sampler[6] == 0 and sampler[7] == 0: return True satisfied = [] for i in range(len(gt_bboxes)): object_bbox = [ gt_bboxes[i][0], gt_bboxes[i][1], gt_bboxes[i][2], gt_bboxes[i][3] ] overlap = jaccard_overlap(sample_bbox, object_bbox) if sampler[6] != 0 and \ overlap < sampler[6]: satisfied.append(False) continue if sampler[7] != 0 and \ overlap > sampler[7]: satisfied.append(False) continue satisfied.append(True) if not satisfy_all: return True if satisfy_all: return np.all(satisfied) else: return False def satisfy_sample_constraint_coverage(sampler, sample_bbox, gt_bboxes): if sampler[6] == 0 and sampler[7] == 0: has_jaccard_overlap = False else: has_jaccard_overlap = True if sampler[8] == 0 and sampler[9] == 0: has_object_coverage = False else: has_object_coverage = True if not has_jaccard_overlap and not has_object_coverage: return True found = False for i in range(len(gt_bboxes)): object_bbox = [ gt_bboxes[i][0], gt_bboxes[i][1], gt_bboxes[i][2], gt_bboxes[i][3] ] if has_jaccard_overlap: overlap = jaccard_overlap(sample_bbox, object_bbox) if sampler[6] != 0 and \ overlap < sampler[6]: continue if sampler[7] != 0 and \ overlap > sampler[7]: continue found = True if has_object_coverage: object_coverage = bbox_coverage(object_bbox, sample_bbox) if sampler[8] != 0 and \ object_coverage < sampler[8]: continue if sampler[9] != 0 and \ object_coverage > sampler[9]: continue found = True if found: return True return found def crop_image_sampling(img, sample_bbox, image_width, image_height, target_size): # no clipping here xmin = int(sample_bbox[0] * image_width) xmax = int(sample_bbox[2] * image_width) ymin = int(sample_bbox[1] * image_height) ymax = int(sample_bbox[3] * image_height) w_off = xmin h_off = ymin width = xmax - xmin height = ymax - ymin cross_xmin = max(0.0, float(w_off)) cross_ymin = max(0.0, float(h_off)) cross_xmax = min(float(w_off + width - 1.0), float(image_width)) cross_ymax = min(float(h_off + height - 1.0), float(image_height)) cross_width = cross_xmax - cross_xmin cross_height = cross_ymax - cross_ymin roi_xmin = 0 if w_off >= 0 else abs(w_off) roi_ymin = 0 if h_off >= 0 else abs(h_off) roi_width = cross_width roi_height = cross_height roi_y1 = int(roi_ymin) roi_y2 = int(roi_ymin + roi_height) roi_x1 = int(roi_xmin) roi_x2 = int(roi_xmin + roi_width) cross_y1 = int(cross_ymin) cross_y2 = int(cross_ymin + cross_height) cross_x1 = int(cross_xmin) cross_x2 = int(cross_xmin + cross_width) sample_img = np.zeros((height, width, 3)) sample_img[roi_y1: roi_y2, roi_x1: roi_x2] = \ img[cross_y1: cross_y2, cross_x1: cross_x2] sample_img = cv2.resize( sample_img, (target_size, target_size), interpolation=cv2.INTER_AREA) return sample_img def is_poly(segm): assert isinstance(segm, (list, dict)), \ "Invalid segm type: {}".format(type(segm)) return isinstance(segm, list) def gaussian_radius(bbox_size, min_overlap): height, width = bbox_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1**2 - 4 * a1 * c1) radius1 = (b1 - sq1) / (2 * a1) a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2**2 - 4 * a2 * c2) radius2 = (b2 - sq2) / (2 * a2) a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3**2 - 4 * a3 * c3) radius3 = (b3 + sq3) / (2 * a3) return min(radius1, radius2, radius3) def draw_gaussian(heatmap, center, radius, k=1, delte=6): diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / delte) x, y = center height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left: radius + right] np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) def gaussian2D(shape, sigma=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h