/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenVector = framework::EigenVector; template class SigmoidKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto input = context.Input(0); auto output = context.Output(0); output->mutable_data(context.GetPlace()); // The clipping is used in Paddle's raw implenmention auto X = EigenVector::Flatten(*input); auto Y = EigenVector::Flatten(*output); auto place = context.GetEigenDevice(); Y.device(place) = 1.0 / (1.0 + (-1.0 * X).exp()); } }; template class SigmoidGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto Y_t = context.Input("Y"); auto dY_t = context.Input(framework::GradVarName("Y")); auto dX_t = context.Output(framework::GradVarName("X")); dX_t->mutable_data(context.GetPlace()); auto dX = EigenVector::Flatten(*dX_t); auto Y = EigenVector::Flatten(*Y_t); auto dY = EigenVector::Flatten(*dY_t); dX.device(context.GetEigenDevice()) = dY * Y * (1. - Y); } }; } // namespace operators } // namespace paddle