/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/reshape_op.h" namespace paddle { namespace operators { class ReshapeOp : public framework::OperatorWithKernel { public: ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext *ctx) const override { // input check PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of ReshapeOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of ReshapeOp should not be null."); auto shape = ctx->Attrs().Get>("shape"); PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty."); auto x_dims = ctx->GetInputDim("X"); std::vector neg_dims_idx; // set some dimension to -1 if it is unknown const int unknown_size = -1; for (size_t i = 0; i < shape.size(); ++i) { PADDLE_ENFORCE(shape[i] > 0 || shape[i] == unknown_size, "Each dimension of Attr(shape) must be positive or %d.", unknown_size); if (shape[i] == unknown_size) { neg_dims_idx.push_back(i); PADDLE_ENFORCE(neg_dims_idx.size() <= 1, "Only one dimension of Attr(shape) can be unknown."); } } int64_t capacity = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()); int64_t in_size = framework::product(x_dims); if (neg_dims_idx.size() == 1) { // dim infer shape[neg_dims_idx[0]] = in_size / (-capacity); // recalculate capacity capacity = shape[neg_dims_idx[0]] * (-capacity); } // capacity check PADDLE_ENFORCE(capacity == in_size, "The size of Input(X) mismatches with Attr(shape)."); // resize output std::vector shape_int64(shape.size(), 0); std::transform(shape.begin(), shape.end(), shape_int64.begin(), [](int a) { return static_cast(a); }); auto out_dims = framework::make_ddim(shape_int64); ctx->SetOutputDim("Out", out_dims); if (shape[0] == x_dims[0]) { // Only pass LoD when the first dimension is equal between // output and input. ctx->ShareLoD("X", /*->*/ "Out"); } } }; class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker { public: ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of reshape operator."); AddOutput("Out", "The output tensor of reshape operator."); AddAttr>("shape", "(vector) " "Target shape of reshape operator."); AddComment(R"DOC( Reshape Operator. Reshape Input(X) into the shape specified by Attr(shape). An example: Given a 2-D tensor X with 2 rows and 2 columns [[1, 2], [3, 4]] and target shape = [1, 4], the reshape operator will transform the tensor X into a 2-D tensor: [[1, 2, 3, 4]] One dimension in the target shape can be set -1, representing that its size is unknown. In this case, the real dimension will be infered from the original shape of Input(X) and other dimensions in the target shape. )DOC"); } }; class ReshapeGradOp : public framework::OperatorWithKernel { public: ReshapeGradOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) shouldn't be null."); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad, ops::ReshapeGradOp); REGISTER_OP_CPU_KERNEL(reshape, ops::ReshapeKernel); REGISTER_OP_CPU_KERNEL( reshape_grad, ops::ReshapeGradKernel);