# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import time import argparse from scipy.special import softmax from openvino.runtime import Core def image_preprocess(img_path, re_shape): img = cv2.imread(img_path) img = cv2.resize( img, (re_shape, re_shape), interpolation=cv2.INTER_LANCZOS4) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.transpose(img, [2, 0, 1]) / 255 img = np.expand_dims(img, 0) img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) img -= img_mean img /= img_std return img.astype(np.float32) def draw_box(img, results, class_label, scale_x, scale_y): label_list = list( map(lambda x: x.strip(), open(class_label, 'r').readlines())) for i in range(len(results)): print(label_list[int(results[i][0])], ':', results[i][1]) bbox = results[i, 2:] label_id = int(results[i, 0]) score = results[i, 1] if (score > 0.20): xmin, ymin, xmax, ymax = [ int(bbox[0] * scale_x), int(bbox[1] * scale_y), int(bbox[2] * scale_x), int(bbox[3] * scale_y) ] cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 3) font = cv2.FONT_HERSHEY_SIMPLEX label_text = label_list[label_id] cv2.rectangle(img, (xmin, ymin), (xmax, ymin - 60), (0, 255, 0), -1) cv2.putText(img, "#" + label_text, (xmin, ymin - 10), font, 1, (255, 255, 255), 2, cv2.LINE_AA) cv2.putText(img, str(round(score, 3)), (xmin, ymin - 40), font, 0.8, (255, 255, 255), 2, cv2.LINE_AA) return img def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes """ scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims( current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :] def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps) def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1] class PicoDetPostProcess(object): """ Args: input_shape (int): network input image size ori_shape (int): ori image shape of before padding scale_factor (float): scale factor of ori image enable_mkldnn (bool): whether to open MKLDNN """ def __init__(self, input_shape, ori_shape, scale_factor, strides=[8, 16, 32, 64], score_threshold=0.4, nms_threshold=0.5, nms_top_k=1000, keep_top_k=100): self.ori_shape = ori_shape self.input_shape = input_shape self.scale_factor = scale_factor self.strides = strides self.score_threshold = score_threshold self.nms_threshold = nms_threshold self.nms_top_k = nms_top_k self.keep_top_k = keep_top_k def warp_boxes(self, boxes, ori_shape): """Apply transform to boxes """ width, height = ori_shape[1], ori_shape[0] n = len(boxes) if n: # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = boxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( n * 4, 2) # x1y1, x2y2, x1y2, x2y1 # xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate( (x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # clip boxes xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) return xy.astype(np.float32) else: return boxes def __call__(self, scores, raw_boxes): batch_size = raw_boxes[0].shape[0] reg_max = int(raw_boxes[0].shape[-1] / 4 - 1) out_boxes_num = [] out_boxes_list = [] for batch_id in range(batch_size): # generate centers decode_boxes = [] select_scores = [] for stride, box_distribute, score in zip(self.strides, raw_boxes, scores): box_distribute = box_distribute[batch_id] score = score[batch_id] # centers fm_h = self.input_shape[0] / stride fm_w = self.input_shape[1] / stride h_range = np.arange(fm_h) w_range = np.arange(fm_w) ww, hh = np.meshgrid(w_range, h_range) ct_row = (hh.flatten() + 0.5) * stride ct_col = (ww.flatten() + 0.5) * stride center = np.stack((ct_col, ct_row, ct_col, ct_row), axis=1) # box distribution to distance reg_range = np.arange(reg_max + 1) box_distance = box_distribute.reshape((-1, reg_max + 1)) box_distance = softmax(box_distance, axis=1) box_distance = box_distance * np.expand_dims(reg_range, axis=0) box_distance = np.sum(box_distance, axis=1).reshape((-1, 4)) box_distance = box_distance * stride # top K candidate topk_idx = np.argsort(score.max(axis=1))[::-1] topk_idx = topk_idx[:self.nms_top_k] center = center[topk_idx] score = score[topk_idx] box_distance = box_distance[topk_idx] # decode box decode_box = center + [-1, -1, 1, 1] * box_distance select_scores.append(score) decode_boxes.append(decode_box) # nms bboxes = np.concatenate(decode_boxes, axis=0) confidences = np.concatenate(select_scores, axis=0) picked_box_probs = [] picked_labels = [] for class_index in range(0, confidences.shape[1]): probs = confidences[:, class_index] mask = probs > self.score_threshold probs = probs[mask] if probs.shape[0] == 0: continue subset_boxes = bboxes[mask, :] box_probs = np.concatenate( [subset_boxes, probs.reshape(-1, 1)], axis=1) box_probs = hard_nms( box_probs, iou_threshold=self.nms_threshold, top_k=self.keep_top_k, ) picked_box_probs.append(box_probs) picked_labels.extend([class_index] * box_probs.shape[0]) if len(picked_box_probs) == 0: out_boxes_list.append(np.empty((0, 4))) out_boxes_num.append(0) else: picked_box_probs = np.concatenate(picked_box_probs) # resize output boxes picked_box_probs[:, :4] = self.warp_boxes( picked_box_probs[:, :4], self.ori_shape[batch_id]) im_scale = np.concatenate([ self.scale_factor[batch_id][::-1], self.scale_factor[batch_id][::-1] ]) picked_box_probs[:, :4] /= im_scale # clas score box out_boxes_list.append( np.concatenate( [ np.expand_dims( np.array(picked_labels), axis=-1), np.expand_dims( picked_box_probs[:, 4], axis=-1), picked_box_probs[:, :4] ], axis=1)) out_boxes_num.append(len(picked_labels)) out_boxes_list = np.concatenate(out_boxes_list, axis=0) out_boxes_num = np.asarray(out_boxes_num).astype(np.int32) return out_boxes_list, out_boxes_num def detect(img_file, compiled_model, re_shape, class_label): output = compiled_model.infer_new_request({0: test_image}) result_ie = list(output.values()) #[0] test_im_shape = np.array([[re_shape, re_shape]]).astype('float32') test_scale_factor = np.array([[1, 1]]).astype('float32') np_score_list = [] np_boxes_list = [] num_outs = int(len(result_ie) / 2) for out_idx in range(num_outs): np_score_list.append(result_ie[out_idx]) np_boxes_list.append(result_ie[out_idx + num_outs]) postprocess = PicoDetPostProcess(test_image.shape[2:], test_im_shape, test_scale_factor) np_boxes, np_boxes_num = postprocess(np_score_list, np_boxes_list) image = cv2.imread(img_file, 1) scale_x = image.shape[1] / test_image.shape[3] scale_y = image.shape[0] / test_image.shape[2] res_image = draw_box(image, np_boxes, class_label, scale_x, scale_y) cv2.imwrite('res.jpg', res_image) cv2.imshow("res", res_image) cv2.waitKey() def benchmark(test_image, compiled_model): # benchmark loop_num = 100 warm_up = 8 timeall = 0 time_min = float("inf") time_max = float('-inf') for i in range(loop_num + warm_up): time0 = time.time() #perform the inference step output = compiled_model.infer_new_request({0: test_image}) time1 = time.time() timed = time1 - time0 if i >= warm_up: timeall = timeall + timed time_min = min(time_min, timed) time_max = max(time_max, timed) time_avg = timeall / loop_num print('inference_time(ms): min={}, max={}, avg={}'.format( round(time_min * 1000, 2), round(time_max * 1000, 1), round(time_avg * 1000, 1))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--benchmark', type=int, default=1, help="0:detect; 1:benchmark") parser.add_argument( '--img_path', type=str, default='demo/000000014439.jpg', help="image path") parser.add_argument( '--onnx_path', type=str, default='out_onnxsim/picodet_s_320_processed.onnx', help="onnx filepath") parser.add_argument('--in_shape', type=int, default=320, help="input_size") parser.add_argument( '--class_label', type=str, default='coco_label.txt', help="class label file") args = parser.parse_args() ie = Core() net = ie.read_model(args.onnx_path) test_image = image_preprocess(args.img_path, args.in_shape) compiled_model = ie.compile_model(net, 'CPU') if args.benchmark == 0: detect(args.img_path, compiled_model, args.in_shape, args.class_label) if args.benchmark == 1: benchmark(test_image, compiled_model)