# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from ..layer_helper import LayerHelper, unique_name from ..framework import Program, Variable, Operator from .. import core from tensor import assign, fill_constant import contextlib from ..registry import autodoc __all__ = [ 'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', 'BlockGuardWithCompletion', 'StaticRNNMemoryLink', 'WhileGuard', 'While', 'lod_rank_table', 'max_sequence_len', 'topk', 'lod_tensor_to_array', 'array_to_lod_tensor', 'increment', 'array_write', 'create_array', 'less_than', 'array_read', 'shrink_memory', 'array_length', 'IfElse', 'DynamicRNN', 'ConditionalBlock', 'StaticRNN', 'reorder_lod_tensor_by_rank', 'ParallelDo', 'Print' ] def split_lod_tensor(input, mask, level=0): """ **split_lod_tensor** This function takes in an input that contains the complete lod information, and takes in a mask which is used to mask certain parts of the input. The output is the true branch and the false branch with the mask applied to the input at a certain level in the tensor. Args: input(tuple|list|None): The input tensor that contains complete lod information needed to construct the output. mask(list): A bool column vector which masks the input. level(int): The specific lod level to rank. Returns: Variable: The true branch of tensor as per the mask applied to input. Variable: The false branch of tensor as per the mask applied to input. Examples: .. code-block:: python x = layers.data(name='x', shape=[1]) x.persistable = True y = layers.data(name='y', shape=[1]) y.persistable = True out_true, out_false = layers.split_lod_tensor( input=x, mask=y, level=level) """ helper = LayerHelper('split_lod_tensor', **locals()) out_true = helper.create_tmp_variable(dtype=input.dtype) out_false = helper.create_tmp_variable(dtype=input.dtype) helper.append_op( type='split_lod_tensor', inputs={ 'X': input, 'Mask': mask, }, outputs={'OutTrue': out_true, 'OutFalse': out_false}, attrs={'level': level}) return out_true, out_false def merge_lod_tensor(in_true, in_false, x, mask, level=0): """ **merge_lod_tensor** This function takes in an input :math:`x`, the True branch, the False branch and a binary :math:`mask`. Using this information, this function merges the True and False branches of the tensor into a single Output at a certain lod level indiacted by :math:`level`. Args: in_true(tuple|list|None): The True branch to be merged. in_false(tuple|list|None): The False branch to be merged. x(tuple|list|None): The input tensor that contains complete lod information needed to construct the output. mask(list): A bool column vector which masks the input. level(int): The specific lod level to rank. Returns: Variable: The merged output tensor. Examples: .. code-block:: python x = layers.data( name='x', shape=[1], dtype='float32', stop_gradient=False) y = layers.data( name='y', shape=[1], dtype='bool', stop_gradient=False) level = 0 out_true, out_false = layers.split_lod_tensor( input=x, mask=y, level=level) out = layers.merge_lod_tensor( in_true=out_true, in_false=out_false, mask=y, x=x, level=level) """ helper = LayerHelper('merge_lod_tensor', **locals()) out = helper.create_tmp_variable(dtype=in_true.dtype) helper.append_op( type='merge_lod_tensor', inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false}, outputs={'Out': out}, attrs={'level': level}) return out def Print(input, first_n=-1, message=None, summarize=-1, print_tensor_name=True, print_tensor_type=True, print_tensor_shape=True, print_tensor_lod=True, print_phase='both'): ''' **Print operator** This creates a print op that will print when a tensor is accessed. Wraps the tensor passed in so that whenever that a tensor is accessed, the message `message` is printed, along with the current value of the tensor `t`. Args: input (Variable): A Tensor to print. summarize (int): Print this number of elements in the tensor, will print all if left is negative. message (str): A string message to print as a prefix. first_n (int): Only log `first_n` number of times. print_tensor_name (bool): Print the tensor name. print_tensor_type (bool): Print the tensor type. print_tensor_shape (bool): Print the tensor shape. print_tensor_lod (bool): Print the tensor lod. print_phase (bool): Which phase to displace, including 'forward', 'backward' and 'both'. If set to 'backward' or 'both', will print the gradients of input tensor. Returns: Variable: Output tensor, same data with input tensor. Examples: .. code-block:: python value = some_layer(...) Print(value, summarize=10, message="The content of some_layer: ") ''' helper = LayerHelper('print', **locals()) out = helper.create_tmp_variable(dtype=helper.input_dtype()) helper.append_op( type='print', inputs={'In': input}, attrs={ 'first_n': first_n, 'summarize': summarize, 'message': message or "", 'print_tensor_name': print_tensor_name, 'print_tensor_type': print_tensor_type, 'print_tensor_shape': print_tensor_shape, 'print_tensor_lod': print_tensor_lod, 'print_phase': print_phase.upper() }, outputs={'Out': out}) return out class BlockGuard(object): """ BlockGuard class. BlockGuard class is used to create a sub-block in a program by using the Python `with` keyword. """ def __init__(self, main_program): if not isinstance(main_program, Program): raise TypeError("BlockGuard takes a program") self.main_program = main_program def __enter__(self): self.main_program.create_block() def __exit__(self, exc_type, exc_val, exc_tb): self.main_program.rollback() if exc_type is not None: return False # re-raise exception return True class ParallelDo(object): """ ParallelDo class. ParallelDo class is used to create a ParallelDo. """ def __init__(self, places, name=None): self.helper = LayerHelper("parallel_do", name=name) self.inputs = [] self.places = places self.outputs = [] self.status = StaticRNN.BEFORE_RNN_BLOCK def do(self): return BlockGuardWithCompletion(self) def parent_block(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def __call__(self, *args, **kwargs): if self.status != StaticRNN.AFTER_RNN_BLOCK: raise ValueError("RNN output can only be retrieved after rnn block") if len(self.outputs) == 0: raise ValueError("RNN has no output") elif len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def read_input(self, var): self.inputs.append(var) return var def write_output(self, var): self.outputs.append(var) def get_parameters(self): main_program = self.helper.main_program current_block = main_program.current_block() parent_block = self.parent_block() local_inputs = set() for op in current_block.ops: for oname in op.output_names: for out_var_name in op.output(oname): local_inputs.add(out_var_name) for var in self.inputs: local_inputs.add(var.name) params = list() for op in current_block.ops: for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in local_inputs: params.append(in_var_name) return [parent_block.var(name) for name in params] def complete_op(self): main_program = self.helper.main_program current_block = main_program.current_block() parent_block = self.parent_block() step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) self.outputs = [ parent_block.create_var( name=o.name, shape=o.shape, dtype=o.dtype, lod_level=o.lod_level, persistable=o.persistable, stop_gradient=o.stop_gradient) for o in self.outputs ] inputs = [parent_block.var(i.name) for i in self.inputs] outputs = [parent_block.var(o.name) for o in self.outputs] parent_block.append_op( type='parallel_do', inputs={ 'inputs': inputs, 'parameters': self.get_parameters(), 'places': self.places }, outputs={'outputs': outputs, 'parallel_scopes': [step_scope]}, attrs={'sub_block': current_block}) class BlockGuardWithCompletion(BlockGuard): """ BlockGuardWithCompletion class. BlockGuardWithCompletion class is used to create an op with a block in a program. """ def __init__(self, rnn): if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)): raise TypeError( "BlockGuardWithCompletion takes a StaticRNN or ParallelDo") super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program) self.rnn = rnn def __enter__(self): self.rnn.status = StaticRNN.IN_RNN_BLOCK return super(BlockGuardWithCompletion, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.rnn.status = StaticRNN.AFTER_RNN_BLOCK self.rnn.complete_op() return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val, exc_tb) class StaticRNNMemoryLink(object): """ StaticRNNMemoryLink class. Args: init: the initial variable for Memory init: Variable pre_mem: the memory variable in previous time step pre_mem: Variable mem: the memory variable in current time step mem: Variable StaticRNNMemoryLink class is used to create a link between two memory cells of a StaticRNN. """ def __init__(self, init, pre_mem, mem=None): self.init = init self.pre_mem = pre_mem self.mem = mem class StaticRNN(object): """ StaticRNN class. StaticRNN class is used to create a StaticRNN. The RNN will have its own parameters like inputs, outputs, memories, status and length. """ BEFORE_RNN_BLOCK = 0 IN_RNN_BLOCK = 1 AFTER_RNN_BLOCK = 2 def __init__(self, name=None): self.helper = LayerHelper("static_rnn", name=name) self.memories = {} # memory map, from pre_mem.name --> MemoryLink self.inputs = [] # input variable list in current block self.outputs = [] # output variable list in parent block self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. # sequence length, since it is a static RNN, sequence length are fixed. self.seq_len = None def step(self): return BlockGuardWithCompletion(self) def _assert_in_rnn_block_(self, method): if self.status != StaticRNN.IN_RNN_BLOCK: raise ValueError("You must invoke {0} in rnn block".format(method)) def memory(self, init=None, shape=None, batch_ref=None, init_value=0.0, init_batch_dim_idx=0, ref_batch_dim_idx=1): """ Args: init: boot memory, if not set, a shape, batch_ref must be provided shape: shape of the boot memory batch_ref: batch size reference variable init_value: the init value of boot memory init_batch_dim_idx: the index of batch size in init's dimension ref_batch_dim_idx: the index of batch size in batch_ref's dimension """ self._assert_in_rnn_block_('memory') if init is None: if shape is None or batch_ref is None: raise ValueError( "if init is None, memory at least need shape and batch_ref") parent_block = self.parent_block() var_name = unique_name("@".join([self.helper.name, "memory_boot"])) boot_var = parent_block.create_var( name=var_name, shape=shape, dtype=batch_ref.dtype, persistable=False) parent_block.append_op( type="fill_constant_batch_size_like", inputs={'Input': [batch_ref]}, outputs={'Out': [boot_var]}, attrs={ 'value': init_value, 'shape': boot_var.shape, 'dtype': boot_var.dtype, 'input_dim_idx': ref_batch_dim_idx, 'output_dim_idx': init_batch_dim_idx }) return self.memory(init=boot_var) else: pre_mem = self.helper.create_variable( name=unique_name("@".join([self.helper.name, "mem"])), dtype=init.dtype, shape=init.shape) self.memories[pre_mem.name] = StaticRNNMemoryLink( init=init, pre_mem=pre_mem) return pre_mem def step_input(self, x): self._assert_in_rnn_block_('step_input') if not isinstance(x, Variable): raise TypeError("step input takes a Variable") if self.seq_len is None: self.seq_len = x.shape[0] elif self.seq_len != x.shape[0]: raise ValueError("Static RNN only take fix seq_len input") ipt = self.helper.create_variable( name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type) self.inputs.append(ipt) return ipt def step_output(self, o): self._assert_in_rnn_block_('step_output') if not isinstance(o, Variable): raise TypeError("step output takes a Variable") tmp_o = self.helper.create_tmp_variable(dtype=o.dtype) self.helper.append_op( type='rnn_memory_helper', inputs={'X': [o]}, outputs={'Out': tmp_o}, attrs={'dtype': o.dtype}) out_var = self.parent_block().create_var( name=tmp_o.name, shape=[self.seq_len] + list(tmp_o.shape), dtype=tmp_o.dtype) self.outputs.append(out_var) def output(self, *outputs): for each in outputs: self.step_output(each) def update_memory(self, mem, var): if not isinstance(mem, Variable) or not isinstance(var, Variable): raise TypeError("update memory should take variables") self.memories[mem.name].mem = var def parent_block(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def __call__(self, *args, **kwargs): if self.status != StaticRNN.AFTER_RNN_BLOCK: raise ValueError("RNN output can only be retrieved after rnn block") if len(self.outputs) == 0: raise ValueError("RNN has no output") elif len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def complete_op(self): main_program = self.helper.main_program rnn_block = main_program.current_block() parent_block = self.parent_block() local_inputs = set() for op in rnn_block.ops: assert isinstance(op, Operator) for oname in op.output_names: for out_var_name in op.output(oname): local_inputs.add(out_var_name) for var in self.inputs: local_inputs.add(var.name) for m in self.memories: local_inputs.add(m) params = list() for op in rnn_block.ops: assert isinstance(op, Operator) for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in local_inputs: params.append(in_var_name) parameters = [parent_block.var(name) for name in params] step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) inlinks = [parent_block.var(i.name) for i in self.inputs] outlinks = self.outputs boot_memories = [] pre_memories = [] memories = [] for _, mem in self.memories.iteritems(): boot_memories.append(mem.init) pre_memories.append(mem.pre_mem.name) mem_var = rnn_block.var(mem.mem.name) assert isinstance(mem_var, Variable) new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype) rnn_block.append_op( type='rnn_memory_helper', inputs={'X': [mem_var]}, outputs={'Out': [new_mem]}, attrs={'dtype': mem_var.dtype}) memories.append(new_mem.name) parent_block.append_op( type='recurrent', inputs={ 'inputs': inlinks, 'initial_states': boot_memories, 'parameters': parameters }, outputs={'outputs': outlinks, 'step_scopes': [step_scope]}, attrs={ 'ex_states': pre_memories, 'states': memories, 'sub_block': rnn_block }) class WhileGuard(BlockGuard): def __init__(self, while_op): if not isinstance(while_op, While): raise TypeError("WhileGuard takes a while op") super(WhileGuard, self).__init__(while_op.helper.main_program) self.while_op = while_op def __enter__(self): self.while_op.status = While.IN_WHILE_BLOCK return super(WhileGuard, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.while_op.status = While.AFTER_WHILE_BLOCK self.while_op.complete() return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb) class While(object): BEFORE_WHILE_BLOCK = 0 IN_WHILE_BLOCK = 1 AFTER_WHILE_BLOCK = 2 def __init__(self, cond, name=None): self.helper = LayerHelper("while", name=name) self.status = While.BEFORE_WHILE_BLOCK if not isinstance(cond, Variable): raise TypeError("condition should be a variable") assert isinstance(cond, Variable) if cond.dtype != core.DataType.BOOL: raise TypeError("condition should be a bool variable") if reduce(lambda a, b: a * b, cond.shape, 1) != 1: raise TypeError("condition should be a bool scalar") self.cond_var = cond def block(self): return WhileGuard(self) def complete(self): main_program = self.helper.main_program while_block = main_program.current_block() parent_block = main_program.block(main_program.current_block() .parent_idx) inner_outputs = {self.cond_var.name} x_name_list = set() for op in while_block.ops: for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in inner_outputs: x_name_list.add(in_var_name) for oname in op.output_names: for out_var_name in op.output(oname): inner_outputs.add(out_var_name) out_vars = [] for inner_out_name in inner_outputs: if inner_out_name in parent_block.vars: out_vars.append(parent_block.var(inner_out_name)) step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) parent_block.append_op( type='while', inputs={ 'X': [parent_block.var(x_name) for x_name in x_name_list], 'Condition': [self.cond_var] }, outputs={'Out': out_vars, 'StepScopes': [step_scope]}, attrs={'sub_block': while_block}) def lod_rank_table(x, level=0): """LoD Rank Table Operator. Given an input variable **x** and a level number of LoD, this layer creates a LodRankTable object. A LoDRankTable object contains a list of bi-element tuples. Each tuple consists of an index and a length, both of which are int type. Refering to specified level of LoD, the index is the sequence index number and the length representes the sequence length. Please note that the list is ranked in descending order by the length. The following is an example: .. code-block:: text x is a LoDTensor: x.lod = [[0, 2, 3], [0, 5, 6, 7]] x.data = [a, b, c, d, e, f, g] 1. set level to 0: Create lod rank table: lod_rank_table_obj = lod_rank_table(x, level=0) Get: lod_rank_table_obj.items() = [(0, 2), (1, 1)] 2. set level to 1: Create lod rank table: lod_rank_table_obj = lod_rank_table(x, level=1) Get: lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)] Args: x (Variable): Input variable, a LoDTensor based which to create the lod rank table. level (int): Specify the LoD level, on which to create the lod rank table. Returns: Variable: The created LoDRankTable object. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1) out = layers.lod_rank_table(x=x, level=0) """ helper = LayerHelper("lod_rank_table", **locals()) table = helper.create_variable( type=core.VarDesc.VarType.LOD_RANK_TABLE, name=unique_name("lod_rank_table")) helper.append_op( type='lod_rank_table', inputs={'X': x}, outputs={'Out': table}, attrs={'level': level}) return table def max_sequence_len(rank_table): """Max Sequence Len Operator. Given a LoDRankTable object, this layer returns the max length of a batch of sequences. In fact, a LoDRankTable object contains a list of tuples() and the list is already sorted by sequence length in descending order, so the operator just returns the sequence length of the first tuple element. Args: rank_table (Variable): Input variable which is a LoDRankTable object. Returns: Variable: The max length of sequence. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1) rank_table = layers.lod_rank_table(x=x, level=0) max_seq_len = layers.max_sequence_len(rank_table) """ helper = LayerHelper("max_seqence_len", **locals()) res = helper.create_tmp_variable(dtype="int64") helper.append_op( type="max_sequence_len", inputs={"RankTable": rank_table}, outputs={"Out": res}) return res def topk(input, k): """ **topk** This function performs the operation that selects the k entries in the input vector and outputs their values and indices as vectors. Thus topk_out[j] is the j-th largest entry in input, and its index is topk_indices[j] Args: input (Variable|list): The input tensor that has all the data. k (int): The number of top elements that the function will pick. Returns: Variable: The variable of type array that contains the k largest entries from input. Variable: The variable of type array that contains the indices of k largest entries from input. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[10]) k = 5 array = fluid.layers.topk(x, k) """ helper = LayerHelper('topk', **locals()) topk_out = helper.create_tmp_variable(dtype=input.data_type) topk_indices = helper.create_tmp_variable(dtype='int64') helper.append_op( type='top_k', inputs={'X': [input]}, outputs={'Out': [topk_out], 'Indices': [topk_indices]}, attrs={'k': k}) return topk_out, topk_indices def lod_tensor_to_array(x, table): """ Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY. Args: x (Variable|list): The LOD tensor to be converted to a LOD tensor array. table (ParamAttr|list): The variable that stores the level of lod which is ordered by sequence length in descending order. Returns: Variable: The variable of type array that has been converted from a tensor. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[10]) table = fluid.layers.lod_rank_table(x, level=0) array = fluid.layers.lod_tensor_to_array(x, table) """ helper = LayerHelper("lod_tensor_to_array", **locals()) array = helper.create_variable( name=unique_name("lod_tensor_to_array"), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) helper.append_op( type='lod_tensor_to_array', inputs={'X': x, 'RankTable': table}, outputs={'Out': array}) return array def array_to_lod_tensor(x, table): """Convert a LoD_Tensor_Aarry to an LoDTensor. Args: x (Variable|list): The lod tensor array to be converted to a tensor. table (ParamAttr|list): The variable that stores the level of lod which is ordered by sequence length in descending order. Returns: Variable: The variable of type tensor that has been converted from an array. Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[10]) table = fluid.layers.lod_rank_table(x, level=0) array = fluid.layers.lod_tensor_to_array(x, table) lod_tensor = fluid.layers.array_to_lod_tensor(array, table) """ helper = LayerHelper("array_to_lod_tensor", **locals()) tmp = helper.create_tmp_variable(dtype=x.dtype) helper.append_op( type="array_to_lod_tensor", inputs={'X': x, 'RankTable': table}, outputs={'Out': tmp}) return tmp def increment(x, value=1.0, in_place=True): """ This function performs an operation that increments each value in the input :math:`x` by an amount: :math:`value` as mentioned in the input parameter. This operation is performed in-place by default. Args: x (Variable|list): The tensor that has the input values. value (float): The amount by which the values should be incremented. in_place (bool): If the increment should be performed in-place. Returns: Variable: The tensor variable storing the transformation of element-wise increment of each value in the input. Examples: .. code-block:: python data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32') data = fluid.layers.increment(x=data, value=3.0, in_place=True) """ helper = LayerHelper("increment", **locals()) if not in_place: out = helper.create_tmp_variable(dtype=x.dtype) else: out = x helper.append_op( type='increment', inputs={'X': [x]}, outputs={'Out': [out]}, attrs={'step': float(value)}) return out def array_write(x, i, array=None): """ This function writes the given input variable to the specified position indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the output LOD_TENSOR_ARRAY is not given(None), a new one will be created and returned. Args: x (Variable|list): The input tensor from which the data will be read. i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to the position to which the input tensor will be written. array (Variable|list): The output LOD_TENSOR_ARRAY to which the input tensor will be written. If this parameter is NONE, a new LOD_TENSOR_ARRAY will be created and returned. Returns: Variable: The output LOD_TENSOR_ARRAY where the input tensor is written. Examples: .. code-block::python tmp = fluid.layers.zeros(shape=[10], dtype='int32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) arr = layers.array_write(tmp, i=i) """ helper = LayerHelper('array_write', **locals()) if array is None: array = helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) helper.append_op( type='write_to_array', inputs={'X': [x], 'I': [i]}, outputs={'Out': [array]}) return array def create_array(dtype): """This function creates an array of type :math:`LOD_TENSOR_ARRAY` using the LayerHelper. Args: dtype (int|float): The data type of the elements in the array. Returns: Variable: The tensor variable storing the elements of data type. Examples: .. code-block:: python data = fluid.layers.create_array(dtype='float32') """ helper = LayerHelper("array", **locals()) return helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=dtype) def less_than(x, y, cond=None, **ignored): """ **Less than** This layer returns the truth value of :math:`x < y` elementwise. Args: x(Variable): First operand of *less_than* y(Variable): Second operand of *less_than* cond(Variable|None): Optional output variable to store the result of *less_than* Returns: Variable: The tensor variable storing the output of *less_than*. Examples: .. code-block:: python less = fluid.layers.less_than(x=label, y=limit) """ helper = LayerHelper("less_than", **locals()) if cond is None: cond = helper.create_tmp_variable(dtype='bool') cond.stop_gradient = True helper.append_op( type='less_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}) return cond def array_read(array, i): """This function performs the operation to read the data in as an LOD_TENSOR_ARRAY. Args: array (Variable|list): The input tensor that will be written to an array. i (Variable|list): The subscript index in tensor array, that points the place where data will be written to. Returns: Variable: The tensor type variable that has the data written to it. Examples: .. code-block::python tmp = fluid.layers.zeros(shape=[10], dtype='int32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) arr = layers.array_read(tmp, i=i) """ helper = LayerHelper('array_read', **locals()) if not isinstance( array, Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: raise TypeError("array should be tensor array vairable") out = helper.create_tmp_variable(dtype=array.dtype) helper.append_op( type='read_from_array', inputs={'X': [array], 'I': [i]}, outputs={'Out': [out]}) return out def shrink_memory(x, i, table): """ This function creates an operator to shrink_rnn_memory using the RankTable as mentioned in the input parameter. """ helper = LayerHelper('shrink_memory', **locals()) out = helper.create_tmp_variable(dtype=x.dtype) helper.append_op( type='shrink_rnn_memory', inputs={'X': [x], 'I': [i], 'RankTable': [table]}, outputs={'Out': [out]}, attrs={}) return out def array_length(array): """This function performs the operation to find the length of the input LOD_TENSOR_ARRAY. Args: array (LOD_TENSOR_ARRAY): The input array that will be used to compute the length. Returns: Variable: The length of the input LoDTensorArray. Examples: .. code-block::python tmp = fluid.layers.zeros(shape=[10], dtype='int32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) arr = fluid.layers.array_write(tmp, i=i) arr_len = fluid.layers.array_length(arr) """ helper = LayerHelper('array_length', **locals()) tmp = helper.create_tmp_variable(dtype='int64') tmp.stop_gradient = True helper.append_op( type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}) return tmp class ConditionalBlockGuard(BlockGuard): def __init__(self, block): if not isinstance(block, ConditionalBlock): raise TypeError("block should be conditional block") super(ConditionalBlockGuard, self).__init__(block.helper.main_program) self.block = block def __enter__(self): return super(ConditionalBlockGuard, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): self.block.complete() return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val, exc_tb) class ConditionalBlock(object): def __init__(self, inputs, name=None): for each_input in inputs: if not isinstance(each_input, Variable): raise TypeError("Each input should be variable") self.inputs = inputs self.helper = LayerHelper('conditional_block', name=name) def block(self): return ConditionalBlockGuard(self) def complete(self): inside_block = self.helper.main_program.current_block() parent_block = self.helper.main_program.block(inside_block.parent_idx) intermediate = set() params = set() for each_op in inside_block.ops: assert isinstance(each_op, Operator) for iname in each_op.input_names: for in_var_name in each_op.input(iname): if in_var_name not in intermediate: params.add(in_var_name) for oname in each_op.output_names: for out_var_name in each_op.output(oname): intermediate.add(out_var_name) input_set = set([ipt.name for ipt in self.inputs]) param_list = [ parent_block.var(each_name) for each_name in params if each_name not in input_set ] out_list = [ parent_block.var(var_name) for var_name in parent_block.vars if var_name in intermediate ] step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) parent_block.append_op( type='conditional_block', inputs={ 'X': self.inputs, 'Params': param_list, }, outputs={'Out': out_list, 'Scope': [step_scope]}, attrs={'sub_block': inside_block}) class IfElseBlockGuard(object): def __init__(self, is_true, ifelse): if not isinstance(ifelse, IfElse): raise TypeError("ifelse must be an instance of IfElse class") if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS: raise ValueError("You cannot invoke IfElse.block() inside a block") self.is_true = is_true self.ie = ifelse if is_true: self.cond_block = ifelse.conditional_true_block else: self.cond_block = ifelse.conditional_false_block if not isinstance(self.cond_block, ConditionalBlock): raise TypeError("Unexpected situation") self.cond_block = self.cond_block.block() def __enter__(self): self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS self.cond_block.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if not self.cond_block.__exit__(exc_type, exc_val, exc_tb): # re-raise inside exception return False if len(self.ie.output_table[1 if self.is_true else 0]) == 0: raise ValueError("Must set output inside block") self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS class IfElse(object): OUT_IF_ELSE_BLOCKS = 0 IN_IF_ELSE_TRUE_BLOCKS = 1 IN_IF_ELSE_FALSE_BLOCKS = 2 def __init__(self, cond, name=None): if not isinstance(cond, Variable): raise TypeError("cond must be a Variable") self.helper = LayerHelper('ifelse', name=name) self.cond = cond self.input_table = {} self.status = IfElse.OUT_IF_ELSE_BLOCKS self.conditional_true_block = ConditionalBlock(inputs=[self.cond]) self.conditional_false_block = ConditionalBlock(inputs=[self.cond]) self.output_table = ([], []) # (true_outs, false_outs) def input(self, x): if self.status == IfElse.OUT_IF_ELSE_BLOCKS: raise ValueError("input must in true/false blocks") if id(x) not in self.input_table: parent_block = self.parent_block() out_true = parent_block.create_var( name=unique_name('ifelse_input' + self.helper.name), dtype=x.dtype) out_false = parent_block.create_var( name=unique_name('ifelse_input' + self.helper.name), dtype=x.dtype) parent_block.append_op( type='split_lod_tensor', inputs={ 'X': x, 'Mask': self.cond, }, outputs={'OutTrue': out_true, 'OutFalse': out_false}, attrs={'level': 0}) self.input_table[id(x)] = (out_true, out_false) else: out_true, out_false = self.input_table[id(x)] if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS: return out_true else: return out_false def parent_block(self): current_block = self.helper.main_program.current_block() return self.helper.main_program.block(current_block.parent_idx) def true_block(self): return IfElseBlockGuard(True, self) def false_block(self): return IfElseBlockGuard(False, self) def output(self, *outs): if self.status == self.OUT_IF_ELSE_BLOCKS: raise ValueError("output can only be invoked in the sub-block") out_table = self.output_table[1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0] parent_block = self.parent_block() for each_out in outs: if not isinstance(each_out, Variable): raise TypeError("Each output should be a variable") # create outside tensor outside_out = parent_block.create_var( name=unique_name("_".join([self.helper.name, 'output'])), dtype=each_out.dtype) out_table.append(outside_out) # assign local var to outside assign(input=each_out, output=outside_out) def __call__(self): if self.status != self.OUT_IF_ELSE_BLOCKS: raise ValueError("IfElse::__call__ must be out of sub-block") false_len, true_len = map(len, self.output_table) if false_len == 0 and true_len == 0: raise ValueError("Must invoke true_block/false_block before " "__call__") elif false_len != true_len and false_len != 0 and true_len != 0: raise ValueError("The output side must be same") elif false_len == 0 or true_len == 0: return self.output_table[0 if false_len != 0 else 1] # else none of false_len/true_len is zero # merge together rlist = [] for false_var, true_var in zip(*self.output_table): rlist.append( merge_lod_tensor( in_true=true_var, in_false=false_var, mask=self.cond, x=self.cond, level=0)) return rlist class DynamicRNN(object): BEFORE_RNN = 0 IN_RNN = 1 AFTER_RNN = 2 def __init__(self, name=None): self.helper = LayerHelper('dynamic_rnn', name=name) self.status = DynamicRNN.BEFORE_RNN self.lod_rank_table = None self.max_seq_len = None self.step_idx = None self.zero_idx = fill_constant( shape=[1], value=0, dtype='int64', force_cpu=True) self.mem_dict = dict() self.output_array = [] self.outputs = [] self.cond = self.helper.create_tmp_variable(dtype='bool') self.cond.stop_gradient = False self.while_op = While(self.cond) self.input_array = [] self.mem_link = [] def step_input(self, x): self._assert_in_rnn_block_("step_input") if not isinstance(x, Variable): raise TypeError( "step_input() can only take a Variable as its input.") parent_block = self._parent_block_() if self.lod_rank_table is None: self.lod_rank_table = parent_block.create_var( name=unique_name('lod_rank_table'), type=core.VarDesc.VarType.LOD_RANK_TABLE) self.lod_rank_table.stop_gradient = True parent_block.append_op( type='lod_rank_table', inputs={"X": x}, outputs={"Out": self.lod_rank_table}) self.max_seq_len = parent_block.create_var( name=unique_name('dynamic_rnn_max_seq_len'), dtype='int64') self.max_seq_len.stop_gradient = False parent_block.append_op( type='max_sequence_len', inputs={'RankTable': self.lod_rank_table}, outputs={"Out": self.max_seq_len}) self.cond.stop_gradient = True parent_block.append_op( type='less_than', inputs={'X': self.step_idx, 'Y': self.max_seq_len}, outputs={'Out': self.cond}) input_array = parent_block.create_var( name=unique_name('dynamic_rnn_input_array'), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) self.input_array.append((input_array, x.dtype)) parent_block.append_op( type='lod_tensor_to_array', inputs={'X': x, 'RankTable': self.lod_rank_table}, outputs={'Out': input_array}) return array_read(array=input_array, i=self.step_idx) @contextlib.contextmanager def block(self): if self.status != DynamicRNN.BEFORE_RNN: raise ValueError("rnn.block() can only be invoke once") self.step_idx = fill_constant( shape=[1], dtype='int64', value=0, force_cpu=True) self.step_idx.stop_gradient = False self.status = DynamicRNN.IN_RNN with self.while_op.block(): yield increment(x=self.step_idx, value=1.0, in_place=True) for new_mem, mem_array in self.mem_link: array_write(x=new_mem, i=self.step_idx, array=mem_array) less_than(x=self.step_idx, y=self.max_seq_len, cond=self.cond) self.status = DynamicRNN.AFTER_RNN for each_array in self.output_array: self.outputs.append( array_to_lod_tensor( x=each_array, table=self.lod_rank_table)) def __call__(self, *args, **kwargs): if self.status != DynamicRNN.AFTER_RNN: raise ValueError(("Output of the dynamic RNN can only be visited " "outside the rnn block.")) if len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def memory(self, init=None, shape=None, value=0.0, dtype='float32'): self._assert_in_rnn_block_('memory') if init is not None: if not isinstance(init, Variable): raise TypeError( "The input arg `init` of memory() must be a Variable") parent_block = self._parent_block_() mem_array = parent_block.create_var( name=unique_name('dynamic_rnn_mem_array'), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=init.dtype) parent_block.append_op( type='write_to_array', inputs={'X': init, 'I': self.zero_idx}, outputs={'Out': mem_array}) retv = array_read(array=mem_array, i=self.step_idx) retv = shrink_memory( x=retv, i=self.step_idx, table=self.lod_rank_table) self.mem_dict[retv.name] = mem_array return retv else: if len(self.input_array) == 0: raise ValueError( "step_input should be invoked before memory(shape=..., value=...)" ) parent_block = self._parent_block_() init = parent_block.create_var( name=unique_name('mem_init'), dtype=dtype) arr, dtype = self.input_array[0] in0 = parent_block.create_var(name=unique_name('in0'), dtype=dtype) parent_block.append_op( type='read_from_array', inputs={'X': [arr], 'I': [self.zero_idx]}, outputs={'Out': [in0]}) parent_block.append_op( type='fill_constant_batch_size_like', inputs={'Input': [in0]}, outputs={'Out': [init]}, attrs={ 'shape': [-1] + shape, 'value': float(value), 'dtype': init.dtype }) return self.memory(init=init) def update_memory(self, ex_mem, new_mem): self._assert_in_rnn_block_('update_memory') if not isinstance(ex_mem, Variable): raise TypeError("The input arg `ex_mem` of update_memory() must " "be a Variable") if not isinstance(new_mem, Variable): raise TypeError("The input arg `new_mem` of update_memory() must " "be a Variable") mem_array = self.mem_dict.get(ex_mem.name, None) if mem_array is None: raise ValueError("Please invoke memory before update_memory") if self.lod_rank_table is None: raise ValueError("Please invoke step_input before update_memory") self.mem_link.append((new_mem, mem_array)) def output(self, *outputs): self._assert_in_rnn_block_('output') parent_block = self._parent_block_() for each in outputs: outside_array = parent_block.create_var( name=unique_name("_".join( [self.helper.name, "output_array", each.name])), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=each.dtype) array_write(x=each, i=self.step_idx, array=outside_array) self.output_array.append(outside_array) def _parent_block_(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def _assert_in_rnn_block_(self, method): if self.status != DynamicRNN.IN_RNN: raise ValueError("{0} can only be invoked inside rnn block.".format( method)) @autodoc def reorder_lod_tensor_by_rank(x, rank_table): helper = LayerHelper('reorder_lod_tensor_by_rank', **locals()) helper.is_instance('x', Variable) helper.is_instance('rank_table', Variable) out = helper.create_tmp_variable(dtype=x.dtype) helper.append_op( type='reorder_lod_tensor_by_rank', inputs={'X': [x], 'RankTable': [rank_table]}, outputs={'Out': [out]}) return out