#include "adam_optimizer.h" #include namespace paddle { namespace optimizer { void AdamOptimizer::Update(const Tensor *gradient) { num_sample_passed_ += 1; double learning_rate = lr_policy_->LearningRate(num_sample_passed_); double coef1 = 1.0 - std::pow(beta_1_, num_sample_passed_); double coef2 = 1.0 - std::pow(beta_2_, num_sample_passed_); learning_rate *= std::sqrt(coef2) / coef1; Tensor ¶m = *parameter_; const Tensor &grad = *gradient; Tensor &m = *momentums_; Tensor &v = *velocitys_; for (size_t i = 0; i < param.size(); ++i) { m[i] = beta_1_ * m[i] + (1.0 - beta_1_) * grad[i]; v[i] = beta_2_ * v[i] + (1.0 - beta_2_) * grad[i] * grad[i]; param[i] -= learning_rate * (m[i] / std::sqrt(v[i] + epsilon_) + decay_ * param[i]); } } const char *AdamOptimizer::SerializeState(int *state_len) { AdamOptimizerState state; state.set_learning_rate(lr_policy_->LearningRate(num_sample_passed_)); state.set_num_sample_passed(num_sample_passed_); TensorToProto(*parameter_, state.mutable_parameter()); TensorToProto(*velocitys_, state.mutable_momentums()); *state_len = CalStateSize(parameter_, momentums_, velocitys_); return state.SerializeAsString().c_str(); } void AdamOptimizer::DeserializeState(const std::string &str) { AdamOptimizerState state; state.ParseFromString(str); lr_policy_->set(state.learning_rate()); num_sample_passed_ = state.num_sample_passed(); ProtoToTensor(state.parameter(), parameter_); ProtoToTensor(state.velocitys(), velocitys_); } } // namespace optimizer } // namespace paddle