/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/trainer/Trainer.h" #include P_DECLARE_string(config); P_DECLARE_string(config_args); P_DEFINE_string(merger, "./paddle_merge_model", "path to paddle_merge_model binary"); using namespace paddle; // NOLINT using namespace std; // NOLINT static const string& configFile = "trainer/tests/sample_trainer_config.conf"; static const string& mergedModelFile = "./test_model_file"; static const string& modelDir = "./test_model_dir"; void checkBuffer(real* vec1, real* vec2, size_t len) { for (size_t i = 0; i < len; i++) { EXPECT_EQ(vec1[i], vec2[i]) << "vec1:" << vec1[i] << " vec2:" << vec2[i]; } } void checkParameters(vector A, vector B) { CHECK_EQ(B.size(), A.size()) << "parameter size not equal"; for (size_t i = 0; i < A.size(); i++) { auto vec1 = A[i]->getBuf(PARAMETER_VALUE); auto vec2 = B[i]->getBuf(PARAMETER_VALUE); CHECK_EQ(vec1->useGpu_, vec2->useGpu_) << "use gpu not equal"; CHECK_EQ(vec1->getSize(), vec2->getSize()) << "size not equal"; if (vec1->useGpu_ == false) { checkBuffer(vec1->getData(), vec2->getData(), vec1->getSize()); } else { VectorPtr cpuVec1 = Vector::create(vec1->getSize(), false); VectorPtr cpuVec2 = Vector::create(vec2->getSize(), false); cpuVec1->copyFrom(*vec1, HPPL_STREAM_DEFAULT); cpuVec2->copyFrom(*vec2, HPPL_STREAM_DEFAULT); hl_stream_synchronize(HPPL_STREAM_DEFAULT); checkBuffer(cpuVec1->getData(), cpuVec2->getData(), cpuVec1->getSize()); } } } TEST(GradientMachine, create) { #ifdef PADDLE_ONLY_CPU FLAGS_use_gpu = false; #endif mkDir(modelDir.c_str()); FLAGS_config = configFile; FLAGS_config_args = "with_cost=False"; auto config = TrainerConfigHelper::createFromFlagConfig(); // save model to directory unique_ptr gradientMachine1( GradientMachine::create(*config)); gradientMachine1->saveParameters(modelDir); Trainer trainer; trainer.init(config); ParameterUtil* paramUtil = trainer.getParameterUtilPtr(); if (paramUtil != NULL) { paramUtil->saveConfigWithPath(modelDir); } // create a different GradientMachine unique_ptr gradientMachine2( GradientMachine::create(*config)); gradientMachine2->randParameters(); // merge config and model to one file string cmd = FLAGS_merger + " --model_dir=" + modelDir + " --config_args=with_cost=False" + " --model_file=" + mergedModelFile; LOG(INFO) << cmd; int ret = system(cmd.c_str()); EXPECT_EQ(0, ret); if (ret) { return; } // create GradientMachine from the merged model DataConfig dataConfig; unique_ptr gradientMachine3( GradientMachine::create(mergedModelFile, &dataConfig)); CHECK(gradientMachine3); EXPECT_EQ(dataConfig.type(), "simple"); EXPECT_EQ(dataConfig.feat_dim(), 3); // compare the parameters of GradientMachine and GradientMachine3 std::vector paraMachine1 = gradientMachine1->getParameters(); std::vector paraMachine3 = gradientMachine3->getParameters(); checkParameters(paraMachine1, paraMachine3); // Test that the GradientMachine created from the merged model // is same as the orginnal one. vector inArgs(1); vector outArgs; int inputDim = 3; int numSamples = 2; CpuMatrix cpuInput(numSamples, inputDim); for (int i = 0; i < numSamples; ++i) { for (int j = 0; j < inputDim; ++j) { cpuInput.getData()[i * inputDim + j] = rand() / (real)RAND_MAX; // NOLINT TODO(yuyang): use rand_r } } MatrixPtr input = Matrix::create(numSamples, inputDim, /* trans */ false, FLAGS_use_gpu); input->copyFrom(cpuInput); inArgs[0].value = input; gradientMachine1->forward(inArgs, &outArgs, PASS_TEST); EXPECT_EQ((size_t)1, outArgs.size()); vector outArgs2; gradientMachine2->forward(inArgs, &outArgs2, PASS_TEST); CpuMatrix out1(outArgs[0].value->getHeight(), outArgs[0].value->getWidth()); CpuMatrix out2(outArgs2[0].value->getHeight(), outArgs2[0].value->getWidth()); out1.copyFrom(*outArgs[0].value); out2.copyFrom(*outArgs2[0].value); for (size_t i = 0; i < out1.getHeight() * out1.getWidth(); i++) { EXPECT_NE(out1.getData()[i], out2.getData()[i]); } gradientMachine3->forward(inArgs, &outArgs2, PASS_TEST); out2.copyFrom(*outArgs2[0].value); checkBuffer(out1.getData(), out2.getData(), out2.getHeight() * out2.getWidth()); cmd = " rm -rf " + modelDir + "/*"; LOG(INFO) << "cmd " << cmd; ret = system(cmd.c_str()); EXPECT_EQ(0, ret); if (ret) { return; } cmd = " rm -rf " + mergedModelFile; LOG(INFO) << "cmd " << cmd; ret = system(cmd.c_str()); EXPECT_EQ(0, ret); if (ret) { return; } // clean up rmDir(modelDir.c_str()); remove(mergedModelFile.c_str()); } int main(int argc, char** argv) { initMain(argc, argv); initPython(argc, argv); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }