# How to train on kunlun ## Prepare kunlun environment [Paddle installation for machines with Kunlun XPU card](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/2.0-rc1/install/install_Kunlun_zh.html) ## yolov3 ### Prepare data Prepare data roadsign ### Train ```shell python3.7 -u tools/train.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=False use_xpu=True ``` ### Eval ```shell python3.7 -u tools/eval.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o weights=output/yolov3_mobilenet_v1_roadsign/model_final.pdparams use_gpu=False use_xpu=True ``` ## ppyolo ### Prepare data Prepare data roadsign ### Train ```shell python3.7 -u tools/train.py --eval -c configs/ppyolo/ppyolo_roadsign_kunlun.yml ``` ### Eval ```shell python3.7 -u tools/eval.py -c configs/ppyolo/ppyolo_roadsign_kunlun.yml ``` ## mask_rcnn ### Prepare data Download dataset from https://dataset.bj.bcebos.com/PaddleDetection_demo/cocome.tar and put it in the dataset directory. ### Train ```shell python3.7 -u tools/train.py --eval -c configs/mask_rcnn_r50_1x_cocome_kunlun.yml ``` ### Eval ```shell python3.7 -u tools/eval.py -c configs/mask_rcnn_r50_1x_cocome_kunlun.yml ```