# FaceDetection
The goal of FaceDetection is to provide efficient and high-speed face detection solutions,
including cutting-edge and classic models.
## Data Pipline
We use the [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/) to carry out the training
and testing of the model, the official website gives detailed data introduction.
- WIDER Face data source:
Loads `wider_face` type dataset with directory structures like this:
```
dataset/wider_face/
├── wider_face_split
│ ├── wider_face_train_bbx_gt.txt
│ ├── wider_face_val_bbx_gt.txt
├── WIDER_train
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_100.jpg
│ │ │ ├── 0_Parade_marchingband_1_381.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
├── WIDER_val
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_1004.jpg
│ │ │ ├── 0_Parade_marchingband_1_1045.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
```
- Download dataset manually:
To download the WIDER FACE dataset, run the following commands:
```
cd dataset/wider_face && ./download.sh
```
- Download dataset automatically:
If a training session is started but the dataset is not setup properly
(e.g, not found in dataset/wider_face), PaddleDetection can automatically
download them from [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/),
the decompressed datasets will be cached in ~/.cache/paddle/dataset/ and can be discovered
automatically subsequently.
### Data Augmentation
- **Data-anchor-sampling:** Randomly transform the scale of the image to a certain range of scales,
greatly enhancing the scale change of the face. The specific operation is to obtain $v=\sqrt{width * height}$
according to the randomly selected face height and width, and judge the value of `v` in which interval of
`[16,32,64,128]`. Assuming `v=45` && `32[1](#lite) | NAS [2](#nas) |
|:------------------------:|:--------:|:--------------------------:|:------------------------:|
| [BlazeFace](#BlazeFace) | ✓ | ✓ | ✓ |
| [FaceBoxes](#FaceBoxes) | ✓ | ✓ | x |
[1] `Lite` edition means reduces the number of network layers and channels.
[2] `NAS` edition means use `Neural Architecture Search` algorithm to
optimized network structure.
**Todo List:**
- [ ] HamBox
- [ ] Pyramidbox
### Model Zoo
#### mAP in WIDER FACE
| Architecture | Type | Size | Img/gpu | Lr schd | Easy Set | Medium Set | Hard Set | Download |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
| BlazeFace | Original | 640 | 8 | 32w | **0.915** | **0.892** | **0.797** | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace | Lite | 640 | 8 | 32w | 0.909 | 0.885 | 0.781 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace | NAS | 640 | 8 | 32w | 0.837 | 0.807 | 0.658 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| FaceBoxes | Original | 640 | 8 | 32w | 0.875 | 0.848 | 0.568 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_original.tar) |
| FaceBoxes | Lite | 640 | 8 | 32w | 0.898 | 0.872 | 0.752 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_lite.tar) |
**NOTES:**
- Get mAP in `Easy/Medium/Hard Set` by multi-scale evaluation in `tools/face_eval.py`.
For details can refer to [Evaluation](#Evaluate-on-the-WIDER-FACE).
- BlazeFace-Lite Training and Testing ues [blazeface.yml](../../configs/face_detection/blazeface.yml)
configs file and set `lite_edition: true`.
#### mAP in FDDB
| Architecture | Type | Size | DistROC | ContROC |
|:------------:|:--------:|:----:|:-------:|:-------:|
| BlazeFace | Original | 640 | **0.992** | **0.762** |
| BlazeFace | Lite | 640 | 0.990 | 0.756 |
| BlazeFace | NAS | 640 | 0.981 | 0.741 |
| FaceBoxes | Original | 640 | 0.985 | 0.731 |
| FaceBoxes | Lite | 640 | 0.987 | 0.741 |
**NOTES:**
- Get mAP by multi-scale evaluation on the FDDB dataset.
For details can refer to [Evaluation](#Evaluate-on-the-FDDB).
#### Infer Time and Model Size comparison
| Architecture | Type | Size | P4(trt32) (ms) | CPU (ms) | Qualcomm SnapDragon 855(armv8) (ms) | Model size (MB) |
|:------------:|:--------:|:----:|:--------------:|:--------:|:-------------------------------------:|:---------------:|
| BlazeFace | Original | 128 | 1.387 | 23.461 | 6.036 | 0.777 |
| BlazeFace | Lite | 128 | 1.323 | 12.802 | 6.193 | 0.68 |
| BlazeFace | NAS | 128 | 1.03 | 6.714 | 2.7152 | 0.234 |
| FaceBoxes | Original | 128 | 3.144 | 14.972 | 19.2196 | 3.6 |
| FaceBoxes | Lite | 128 | 2.295 | 11.276 | 8.5278 | 2 |
| BlazeFace | Original | 320 | 3.01 | 132.408 | 70.6916 | 0.777 |
| BlazeFace | Lite | 320 | 2.535 | 69.964 | 69.9438 | 0.68 |
| BlazeFace | NAS | 320 | 2.392 | 36.962 | 39.8086 | 0.234 |
| FaceBoxes | Original | 320 | 7.556 | 84.531 | 52.1022 | 3.6 |
| FaceBoxes | Lite | 320 | 18.605 | 78.862 | 59.8996 | 2 |
| BlazeFace | Original | 640 | 8.885 | 519.364 | 149.896 | 0.777 |
| BlazeFace | Lite | 640 | 6.988 | 284.13 | 149.902 | 0.68 |
| BlazeFace | NAS | 640 | 7.448 | 142.91 | 69.8266 | 0.234 |
| FaceBoxes | Original | 640 | 78.201 | 394.043 | 169.877 | 3.6 |
| FaceBoxes | Lite | 640 | 59.47 | 313.683 | 139.918 | 2 |
**NOTES:**
- CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
- P4(trt32) and CPU tests based on PaddlePaddle, PaddlePaddle version is 1.6.1
- ARM test environment:
- Qualcomm SnapDragon 855(armv8)
- Single thread
- Paddle-Lite version 2.0.0
## Get Started
`Training` and `Inference` please refer to [GETTING_STARTED.md](../../docs/GETTING_STARTED.md)
- **NOTES:**
- `BlazeFace` and `FaceBoxes` is trained in 4 GPU with `batch_size=8` per gpu (total batch size as 32)
and trained 320000 iters.(If your GPU count is not 4, please refer to the rule of training parameters
in the table of [calculation rules](../../docs/GETTING_STARTED.md#faq))
- Currently we do not support evaluation in training.
### Evaluation
```
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/face_eval.py -c configs/face_detection/blazeface.yml
```
- Optional arguments
- `-d` or `--dataset_dir`: Dataset path, same as dataset_dir of configs. Such as: `-d dataset/wider_face`.
- `-f` or `--output_eval`: Evaluation file directory, default is `output/pred`.
- `-e` or `--eval_mode`: Evaluation mode, include `widerface` and `fddb`, default is `widerface`.
- `--multi_scale`: If you add this action button in the command, it will select `multi_scale` evaluation.
Default is `False`, it will select `single-scale` evaluation.
After the evaluation is completed, the test result in txt format will be generated in `output/pred`,
and then mAP will be calculated according to different data sets. If you set `--eval_mode=widerface`,
it will [Evaluate on the WIDER FACE](#Evaluate-on-the-WIDER-FACE).If you set `--eval_mode=fddb`,
it will [Evaluate on the FDDB](#Evaluate-on-the-FDDB).
#### Evaluate on the WIDER FACE
- Download the official evaluation script to evaluate the AP metrics:
```
wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip
unzip eval_tools.zip && rm -f eval_tools.zip
```
- Modify the result path and the name of the curve to be drawn in `eval_tools/wider_eval.m`:
```
# Modify the folder name where the result is stored.
pred_dir = './pred';
# Modify the name of the curve to be drawn
legend_name = 'Fluid-BlazeFace';
```
- `wider_eval.m` is the main execution program of the evaluation module. The run command is as follows:
```
matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;"
```
#### Evaluate on the FDDB
[FDDB dataset](http://vis-www.cs.umass.edu/fddb/) details can refer to FDDB's official website.
- Download the official dataset and evaluation script to evaluate the ROC metrics:
```
#external link to the Faces in the Wild data set
wget http://tamaraberg.com/faceDataset/originalPics.tar.gz
#The annotations are split into ten folds. See README for details.
wget http://vis-www.cs.umass.edu/fddb/FDDB-folds.tgz
#information on directory structure and file formats
wget http://vis-www.cs.umass.edu/fddb/README.txt
```
- Install OpenCV: Requires [OpenCV library](http://sourceforge.net/projects/opencvlibrary/)
If the utility 'pkg-config' is not available for your operating system,
edit the Makefile to manually specify the OpenCV flags as following:
```
INCS = -I/usr/local/include/opencv
LIBS = -L/usr/local/lib -lcxcore -lcv -lhighgui -lcvaux -lml
```
- Compile FDDB evaluation code: execute `make` in evaluation folder.
- Generate full image path list and groundtruth in FDDB-folds. The run command is as follows:
```
cat `ls|grep -v"ellipse"` > filePath.txt` and `cat *ellipse* > fddb_annotFile.txt`
```
- Evaluation
Finally evaluation command is:
```
./evaluate -a ./FDDB/FDDB-folds/fddb_annotFile.txt \
-d DETECTION_RESULT.txt -f 0 \
-i ./FDDB -l ./FDDB/FDDB-folds/filePath.txt \
-r ./OUTPUT_DIR -z .jpg
```
**NOTES:** The interpretation of the argument can be performed by `./evaluate --help`.
## Algorithm Description
### BlazeFace
**Introduction:**
[BlazeFace](https://arxiv.org/abs/1907.05047) is Google Research published face detection model.
It's lightweight but good performance, and tailored for mobile GPU inference. It runs at a speed
of 200-1000+ FPS on flagship devices.
**Particularity:**
- Anchor scheme stops at 8×8(input 128x128), 6 anchors per pixel at that resolution.
- 5 single, and 6 double BlazeBlocks: 5×5 depthwise convs, same accuracy with fewer layers.
- Replace the non-maximum suppression algorithm with a blending strategy that estimates the
regression parameters of a bounding box as a weighted mean between the overlapping predictions.
**Edition information:**
- Original: Reference original paper reproduction.
- Lite: Replace 5x5 conv with 3x3 conv, fewer network layers and conv channels.
- NAS: use `Neural Architecture Search` algorithm to optimized network structure,
less network layer and conv channel number than `Lite`.
### FaceBoxes
**Introduction:**
[FaceBoxes](https://arxiv.org/abs/1708.05234) which named A CPU Real-time Face Detector
with High Accuracy is face detector proposed by Shifeng Zhang, with high performance on
both speed and accuracy. This paper is published by IJCB(2017).
**Particularity:**
- Anchor scheme stops at 20x20, 10x10, 5x5, which network input size is 640x640,
including 3, 1, 1 anchors per pixel at each resolution. The corresponding densities
are 1, 2, 4(20x20), 4(10x10) and 4(5x5).
- 2 convs with CReLU, 2 poolings, 3 inceptions and 2 convs with ReLU.
- Use density prior box to improve detection accuracy.
**Edition information:**
- Original: Reference original paper reproduction.
- Lite: 2 convs with CReLU, 1 pooling, 2 convs with ReLU, 3 inceptions and 2 convs with ReLU.
Anchor scheme stops at 80x80 and 40x40, including 3, 1 anchors per pixel at each resolution.
The corresponding densities are 1, 2, 4(80x80) and 4(40x40), using less conv channel number than lite.
## Contributing
Contributions are highly welcomed and we would really appreciate your feedback!!