/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "RowConvOp.h" #include #include "paddle/math/Vector.h" namespace paddle { template <> void RowConv(CpuMatrix& out, const CpuMatrix& in, const CpuMatrix& filter, const CpuIVector& seq) { const int* starts = seq.getData(); const size_t numSeq = seq.getSize() - 1; const size_t contextLength = filter.getHeight(); for (size_t i = 0; i < numSeq; ++i) { size_t begin = starts[i]; size_t end = starts[i + 1]; for (size_t j = begin; j < end; ++j) { MatrixPtr x; MatrixPtr w; if ((j + contextLength) < end) { x = (const_cast(in)).subMatrix(j, contextLength); w = (const_cast(filter)).subMatrix(0, contextLength); } else { x = (const_cast(in)).subMatrix(j, end - j); w = (const_cast(filter)).subMatrix(0, end - j); } MatrixPtr y = out.subMatrix(j, 1); y->addDotMulVMM(*x, *w); } } } template <> void RowConvGrad(const CpuMatrix& outG, const CpuMatrix& in, const CpuMatrix& filter, CpuMatrix& inG, CpuMatrix& filterG, const CpuIVector& seq) { // gradient w.r.t filter const int* starts = seq.getData(); const size_t numSeq = seq.getSize() - 1; const size_t contextLength = filter.getHeight(); if (filterG) { for (size_t i = 0; i < numSeq; ++i) { size_t begin = starts[i]; size_t end = starts[i + 1]; size_t steps = end - begin; for (size_t j = 0; j < contextLength; ++j) { MatrixPtr x = (const_cast(in)).subMatrix(begin + j, steps - j); MatrixPtr dy = (const_cast(outG)).subMatrix(begin, steps - j); MatrixPtr dw = filterG.subMatrix(j, 1); dw->addDotMulVMM(*dy, *x); } } } // gradient w.r.t input feature if (inG) { for (size_t i = 0; i < numSeq; ++i) { size_t begin = starts[i]; size_t end = starts[i + 1]; size_t steps = end - begin; for (size_t j = 0; j < steps; ++j) { MatrixPtr dx = inG.subMatrix(begin + j, 1); for (size_t t = 0; t < contextLength; ++t) { if ((int(j) - int(t)) >= 0) { MatrixPtr dy = (const_cast(outG)).subMatrix(begin + j - t, 1); MatrixPtr w = (const_cast(filter)).subMatrix(t, 1); dx->addDotMul(*dy, *w, 1.0, 1.0); } } } } } } /** * \brief TODO(qingqing) * */ template class RowConvFunc : public FunctionBase { public: void init(const FuncConfig& config) override {} void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { // check CHECK_EQ(2UL, inputs.size()); CHECK_EQ(1UL, outputs.size()); CHECK_EQ(outputs[0].getArgType(), ADD_TO); CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg()) << "SequenceArg required here."; const auto in = dynamic_cast(inputs[0]); auto out = dynamic_cast(outputs[0]); auto w = inputs[1]; CHECK(in.data() && out.data() && in.getSequenceId().data()); CHECK_EQ(in.shape().ndims(), 2UL); CHECK_EQ(out.shape().ndims(), 2UL); CHECK_EQ(in.shape()[1], out.shape()[1]); CHECK_EQ(in.shape()[0], out.shape()[0]); CHECK_EQ(w.shape()[1], in.shape()[1]); auto outMat = out.matrix(); const auto inMat = in.matrix(); const auto wMat = w.matrix(); const auto seqId = in.getSequenceId().vector(); RowConv(outMat, inMat, wMat, seqId); } }; /** * \brief TODO(qingqing) * * Argument in this Function: */ template class RowConvGradFunc : public FunctionBase { public: void init(const FuncConfig& config) override {} void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { const auto outGrad = dynamic_cast(inputs[0]); const auto in = dynamic_cast(inputs[1]); const auto w = inputs[2]; auto inGrad = dynamic_cast(outputs[0]); auto wGrad = outputs[1]; const auto outGMat = outGrad.matrix(); const auto inMat = in.matrix(); const auto wMat = w.matrix(); auto inGMat = inGrad.data() ? inGrad.matrix() : typename Tensor::Matrix(nullptr, 0, 0); auto wGMat = wGrad.data() ? wGrad.matrix() : typename Tensor::Matrix(nullptr, 0, 0); const auto seqId = in.getSequenceId().vector(); std::cout << "in:" << std::endl; for (int i = 0; i < inMat.getHeight(); ++i) { for (int j = 0; j < inMat.getWidth(); ++j) { std::cout << outGMat.getElement(i, j) << " "; } std::cout << std::endl; } std::cout << "w:" << std::endl; for (int i = 0; i < wMat.getHeight(); ++i) { for (int j = 0; j < wMat.getWidth(); ++j) { std::cout << wMat.getElement(i, j) << " "; } std::cout << std::endl; } std::cout << "w:" << std::endl; for (int i = 0; i < seqId.getSize(); ++i) { std::cout << seqId.getElement(i) << " "; } std::cout << std::endl; RowConvGrad(outGMat, inMat, wMat, inGMat, wGMat, seqId); std::cout << std::endl << "out:" << std::endl; for (int i = 0; i < inGMat.getHeight(); ++i) { for (int j = 0; j < inGMat.getWidth(); ++j) { std::cout << inGMat.getElement(i, j) << " "; } std::cout << std::endl; } } }; REGISTER_TYPED_FUNC(RowConv, CPU, RowConvFunc); REGISTER_TYPED_FUNC(RowConvGrad, CPU, RowConvGradFunc); #ifndef PADDLE_ONLY_CPU REGISTER_TYPED_FUNC(RowConv, GPU, RowConvFunc); REGISTER_TYPED_FUNC(RowConvGrad, GPU, RowConvGradFunc); #endif } // namespace paddle