architecture: SOLOv2 use_gpu: true max_iters: 90000 snapshot_iter: 10000 log_smooth_window: 20 save_dir: output pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar metric: COCO weights: output/solov2_r50_fpn_1x/model_final num_classes: 81 SOLOv2: backbone: ResNet fpn: FPN bbox_head: SOLOv2Head mask_head: SOLOv2MaskHead ResNet: depth: 50 feature_maps: [2, 3, 4, 5] freeze_at: 2 norm_type: bn FPN: max_level: 6 min_level: 2 num_chan: 256 spatial_scale: [0.03125, 0.0625, 0.125, 0.25] reverse_out: True SOLOv2Head: seg_feat_channels: 512 stacked_convs: 4 num_grids: [40, 36, 24, 16, 12] kernel_out_channels: 256 SOLOv2MaskHead: out_channels: 128 start_level: 0 end_level: 3 num_classes: 256 LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [60000, 80000] - !LinearWarmup start_factor: 0. steps: 1000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 _READER_: 'solov2_reader.yml'