// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include "paddle_inference_api.h" // NOLINT #include "include/preprocess_op.h" #include "include/config_parser.h" using namespace paddle_infer; namespace PaddleDetection { // Object Detection Result struct ObjectResult { // Rectangle coordinates of detected object: left, right, top, down std::vector rect; // Class id of detected object int class_id; // Confidence of detected object float confidence; }; // Generate visualization colormap for each class std::vector GenerateColorMap(int num_class); // Visualiztion Detection Result cv::Mat VisualizeResult(const cv::Mat& img, const std::vector& results, const std::vector& lables, const std::vector& colormap, const bool is_rbox); class ObjectDetector { public: explicit ObjectDetector(const std::string& model_dir, bool use_gpu=false, bool use_mkldnn=false, int cpu_threads=1, const std::string& run_mode="fluid", const int gpu_id=0, bool use_dynamic_shape=false, const int trt_min_shape=1, const int trt_max_shape=1280, const int trt_opt_shape=640, bool trt_calib_mode=false) { this->use_gpu_ = use_gpu; this->gpu_id_ = gpu_id; this->cpu_math_library_num_threads_ = cpu_threads; this->use_mkldnn_ = use_mkldnn; this->use_dynamic_shape_ = use_dynamic_shape; this->trt_min_shape_ = trt_min_shape; this->trt_max_shape_ = trt_max_shape; this->trt_opt_shape_ = trt_opt_shape; this->trt_calib_mode_ = trt_calib_mode; config_.load_config(model_dir); this->min_subgraph_size_ = config_.min_subgraph_size_; threshold_ = config_.draw_threshold_; image_shape_ = config_.image_shape_; preprocessor_.Init(config_.preprocess_info_, image_shape_); LoadModel(model_dir, 1, run_mode); } // Load Paddle inference model void LoadModel( const std::string& model_dir, const int batch_size = 1, const std::string& run_mode = "fluid"); // Run predictor void Predict(const std::vector imgs, const double threshold = 0.5, const int warmup = 0, const int repeats = 1, std::vector* result = nullptr, std::vector* bbox_num = nullptr, std::vector* times = nullptr); // Get Model Label list const std::vector& GetLabelList() const { return config_.label_list_; } private: bool use_gpu_ = false; int gpu_id_ = 0; int cpu_math_library_num_threads_ = 1; bool use_mkldnn_ = false; int min_subgraph_size_ = 3; bool use_dynamic_shape_ = false; int trt_min_shape_ = 1; int trt_max_shape_ = 1280; int trt_opt_shape_ = 640; bool trt_calib_mode_ = false; // Preprocess image and copy data to input buffer void Preprocess(const cv::Mat& image_mat); // Postprocess result void Postprocess( const std::vector mats, std::vector* result, std::vector bbox_num, bool is_rbox); std::shared_ptr predictor_; Preprocessor preprocessor_; ImageBlob inputs_; std::vector output_data_; std::vector out_bbox_num_data_; float threshold_; ConfigPaser config_; std::vector image_shape_; }; } // namespace PaddleDetection