// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "include/keypoint_postprocess.h" #define PI 3.1415926535 #define HALF_CIRCLE_DEGREE 180 cv::Point2f get_3rd_point(cv::Point2f& a, cv::Point2f& b) { cv::Point2f direct{a.x - b.x, a.y - b.y}; return cv::Point2f(a.x - direct.y, a.y + direct.x); } std::vector get_dir(float src_point_x, float src_point_y, float rot_rad) { float sn = sin(rot_rad); float cs = cos(rot_rad); std::vector src_result{0.0, 0.0}; src_result[0] = src_point_x * cs - src_point_y * sn; src_result[1] = src_point_x * sn + src_point_y * cs; return src_result; } void affine_tranform( float pt_x, float pt_y, cv::Mat& trans, std::vector& preds, int p) { double new1[3] = {pt_x, pt_y, 1.0}; cv::Mat new_pt(3, 1, trans.type(), new1); cv::Mat w = trans * new_pt; preds[p * 3 + 1] = static_cast(w.at(0, 0)); preds[p * 3 + 2] = static_cast(w.at(1, 0)); } void get_affine_transform(std::vector& center, std::vector& scale, float rot, std::vector& output_size, cv::Mat& trans, int inv) { float src_w = scale[0]; float dst_w = static_cast(output_size[0]); float dst_h = static_cast(output_size[1]); float rot_rad = rot * PI / HALF_CIRCLE_DEGREE; std::vector src_dir = get_dir(-0.5 * src_w, 0, rot_rad); std::vector dst_dir{static_cast(-0.5) * dst_w, 0.0}; cv::Point2f srcPoint2f[3], dstPoint2f[3]; srcPoint2f[0] = cv::Point2f(center[0], center[1]); srcPoint2f[1] = cv::Point2f(center[0] + src_dir[0], center[1] + src_dir[1]); srcPoint2f[2] = get_3rd_point(srcPoint2f[0], srcPoint2f[1]); dstPoint2f[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5); dstPoint2f[1] = cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]); dstPoint2f[2] = get_3rd_point(dstPoint2f[0], dstPoint2f[1]); if (inv == 0) { trans = cv::getAffineTransform(srcPoint2f, dstPoint2f); } else { trans = cv::getAffineTransform(dstPoint2f, srcPoint2f); } } void transform_preds(std::vector& coords, std::vector& center, std::vector& scale, std::vector& output_size, std::vector& dim, std::vector& target_coords) { cv::Mat trans(2, 3, CV_64FC1); get_affine_transform(center, scale, 0, output_size, trans, 1); for (int p = 0; p < dim[1]; ++p) { affine_tranform(coords[p * 2], coords[p * 2 + 1], trans, target_coords, p); } } // only for batchsize == 1 void get_max_preds(std::vector& heatmap, std::vector& dim, std::vector& preds, std::vector& maxvals, int batchid, int joint_idx) { int num_joints = dim[1]; int width = dim[3]; std::vector idx; idx.resize(num_joints * 2); for (int j = 0; j < dim[1]; j++) { float* index = &( heatmap[batchid * num_joints * dim[2] * dim[3] + j * dim[2] * dim[3]]); float* end = index + dim[2] * dim[3]; float* max_dis = std::max_element(index, end); auto max_id = std::distance(index, max_dis); maxvals[j] = *max_dis; if (*max_dis > 0) { preds[j * 2] = static_cast(max_id % width); preds[j * 2 + 1] = static_cast(max_id / width); } } } void dark_parse(std::vector& heatmap, std::vector& dim, std::vector& coords, int px, int py, int index, int ch){ /*DARK postpocessing, Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). 1) offset = - hassian.inv() * derivative 2) dx = (heatmap[x+1] - heatmap[x-1])/2. 3) dxx = (dx[x+1] - dx[x-1])/2. 4) derivative = Mat([dx, dy]) 5) hassian = Mat([[dxx, dxy], [dxy, dyy]]) */ std::vector::const_iterator first1 = heatmap.begin() + index; std::vector::const_iterator last1 = heatmap.begin() + index + dim[2] * dim[3]; std::vector heatmap_ch(first1, last1); cv::Mat heatmap_mat = cv::Mat(heatmap_ch).reshape(0,dim[2]); heatmap_mat.convertTo(heatmap_mat, CV_32FC1); cv::GaussianBlur(heatmap_mat, heatmap_mat, cv::Size(3, 3), 0, 0); heatmap_mat = heatmap_mat.reshape(1,1); heatmap_ch = std::vector(heatmap_mat.reshape(1,1)); float epsilon = 1e-10; //sample heatmap to get values in around target location float xy = log(fmax(heatmap_ch[py * dim[3] + px], epsilon)); float xr = log(fmax(heatmap_ch[py * dim[3] + px + 1], epsilon)); float xl = log(fmax(heatmap_ch[py * dim[3] + px - 1], epsilon)); float xr2 = log(fmax(heatmap_ch[py * dim[3] + px + 2], epsilon)); float xl2 = log(fmax(heatmap_ch[py * dim[3] + px - 2], epsilon)); float yu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px], epsilon)); float yd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px], epsilon)); float yu2 = log(fmax(heatmap_ch[(py + 2) * dim[3] + px], epsilon)); float yd2 = log(fmax(heatmap_ch[(py - 2) * dim[3] + px], epsilon)); float xryu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px + 1], epsilon)); float xryd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px + 1], epsilon)); float xlyu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px - 1], epsilon)); float xlyd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px - 1], epsilon)); //compute dx/dy and dxx/dyy with sampled values float dx = 0.5 * (xr - xl); float dy = 0.5 * (yu - yd); float dxx = 0.25 * (xr2 - 2*xy + xl2); float dxy = 0.25 * (xryu - xryd - xlyu + xlyd); float dyy = 0.25 * (yu2 - 2*xy + yd2); //finally get offset by derivative and hassian, which combined by dx/dy and dxx/dyy if(dxx * dyy - dxy*dxy != 0){ float M[2][2] = {dxx, dxy, dxy, dyy}; float D[2] = {dx, dy}; cv::Mat hassian(2,2,CV_32F,M); cv::Mat derivative(2,1,CV_32F,D); cv::Mat offset = - hassian.inv() * derivative; coords[ch * 2] += offset.at(0,0); coords[ch * 2 + 1] += offset.at(1,0); } } void get_final_preds(std::vector& heatmap, std::vector& dim, std::vector& idxout, std::vector& idxdim, std::vector& center, std::vector scale, std::vector& preds, int batchid, bool DARK) { std::vector coords; coords.resize(dim[1] * 2); int heatmap_height = dim[2]; int heatmap_width = dim[3]; for (int j = 0; j < dim[1]; ++j) { int index = (batchid * dim[1] + j) * dim[2] * dim[3]; int idx = idxout[batchid * dim[1] + j]; preds[j * 3] = heatmap[index + idx]; coords[j * 2] = idx % heatmap_width; coords[j * 2 + 1] = idx / heatmap_width; int px = int(coords[j * 2] + 0.5); int py = int(coords[j * 2 + 1] + 0.5); if(DARK && px > 1 && px < heatmap_width - 2){ dark_parse(heatmap, dim, coords, px, py, index, j); } else{ if (px > 0 && px < heatmap_width - 1) { float diff_x = heatmap[index + py * dim[3] + px + 1] - heatmap[index + py * dim[3] + px - 1]; coords[j * 2] += diff_x > 0 ? 1 : -1 * 0.25; } if (py > 0 && py < heatmap_height - 1) { float diff_y = heatmap[index + (py + 1) * dim[3] + px] - heatmap[index + (py - 1) * dim[3] + px]; coords[j * 2 + 1] += diff_y > 0 ? 1 : -1 * 0.25; } } } std::vector img_size{heatmap_width, heatmap_height}; transform_preds(coords, center, scale, img_size, dim, preds); }