# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.layers as layers from paddle.fluid.transpiler.distribute_transpiler import delete_ops import numpy as np class TestSimpleDistTranspiler(unittest.TestCase): def setUp(self): self.trainer_id = 0 self.trainers = 2 self.pservers = 2 self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175" self.current_pserver_ep = "127.0.0.1:6175" def net_conf(self): x = fluid.layers.data(name='x', shape=[1000], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1000, act=None, param_attr=fluid.ParamAttr(name='fc_w')) y = fluid.layers.data(name='y', shape=[1], dtype='float32') cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1) optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) return optimize_ops, params_grads def test_simple_transpiler(self): np.random.seed(1) trainer = self.get_trainer() pserver, startup = self.get_pserver(self.current_pserver_ep) self.assertEqual([op.type for op in trainer.global_block().ops], self.get_expect_trainer_ops()) self.assertEqual(len(pserver.blocks), 2) # block0: listen_and_serv self.assertEqual([op.type for op in pserver.blocks[0].ops], ["listen_and_serv"]) # block1: optimize pass self.assertEqual([op.type for op in pserver.blocks[1].ops], ["sum", "scale", "sgd"]) # confirm startup program self.assertEqual([op.type for op in startup.global_block().ops], ["fill_constant", "uniform_random", "uniform_random"]) # the variable #fc_w will NOT be splited fc_w_var = startup.global_block().var("fc_w@GRAD") self.assertEqual(fc_w_var.shape, (1000, 1000)) fc_w_var = startup.global_block().var("fc_w@GRAD.trainer_0") self.assertEqual(fc_w_var.shape, (1000, 1000)) def get_main_program(self): main = fluid.Program() with fluid.program_guard(main): self.net_conf() return main def get_expect_trainer_ops(self): trainer = fluid.Program() with fluid.program_guard(trainer): optimize_ops, params_grads = self.net_conf() delete_ops(trainer.global_block(), optimize_ops) ops = [op.type for op in trainer.global_block().ops] + [ "send_vars", "send_barrier", "recv", "recv", "fetch_barrier" ] ops.insert(ops.index("elementwise_add_grad") + 1, "send_vars") return ops def get_trainer(self): return self._transpiler_instance().get_trainer_program() def get_pserver(self, ep): t = self._transpiler_instance() pserver = t.get_pserver_program(ep) startup = t.get_startup_program(ep, pserver) return pserver, startup def _transpiler_instance(self): main = self.get_main_program() t = fluid.DistributeTranspiler() t.transpile( self.trainer_id, program=main, pservers=self.pserver_eps, trainers=self.trainers, align_var_to_block=False) return t if __name__ == "__main__": unittest.main()