// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "include/trajectory.h" namespace PaddleDetection { void TKalmanFilter::init(const cv::Mat &measurement) { measurement.copyTo(statePost(cv::Rect(0, 0, 1, 4))); statePost(cv::Rect(0, 4, 1, 4)).setTo(0); statePost.copyTo(statePre); float varpos = 2 * std_weight_position * (*measurement.ptr(3)); varpos *= varpos; float varvel = 10 * std_weight_velocity * (*measurement.ptr(3)); varvel *= varvel; errorCovPost.setTo(0); *errorCovPost.ptr(0, 0) = varpos; *errorCovPost.ptr(1, 1) = varpos; *errorCovPost.ptr(2, 2) = 1e-4f; *errorCovPost.ptr(3, 3) = varpos; *errorCovPost.ptr(4, 4) = varvel; *errorCovPost.ptr(5, 5) = varvel; *errorCovPost.ptr(6, 6) = 1e-10f; *errorCovPost.ptr(7, 7) = varvel; errorCovPost.copyTo(errorCovPre); } const cv::Mat &TKalmanFilter::predict() { float varpos = std_weight_position * (*statePre.ptr(3)); varpos *= varpos; float varvel = std_weight_velocity * (*statePre.ptr(3)); varvel *= varvel; processNoiseCov.setTo(0); *processNoiseCov.ptr(0, 0) = varpos; *processNoiseCov.ptr(1, 1) = varpos; *processNoiseCov.ptr(2, 2) = 1e-4f; *processNoiseCov.ptr(3, 3) = varpos; *processNoiseCov.ptr(4, 4) = varvel; *processNoiseCov.ptr(5, 5) = varvel; *processNoiseCov.ptr(6, 6) = 1e-10f; *processNoiseCov.ptr(7, 7) = varvel; return cv::KalmanFilter::predict(); } const cv::Mat &TKalmanFilter::correct(const cv::Mat &measurement) { float varpos = std_weight_position * (*measurement.ptr(3)); varpos *= varpos; measurementNoiseCov.setTo(0); *measurementNoiseCov.ptr(0, 0) = varpos; *measurementNoiseCov.ptr(1, 1) = varpos; *measurementNoiseCov.ptr(2, 2) = 1e-2f; *measurementNoiseCov.ptr(3, 3) = varpos; return cv::KalmanFilter::correct(measurement); } void TKalmanFilter::project(cv::Mat &mean, cv::Mat &covariance) const { float varpos = std_weight_position * (*statePost.ptr(3)); varpos *= varpos; cv::Mat measurementNoiseCov_ = cv::Mat::eye(4, 4, CV_32F); *measurementNoiseCov_.ptr(0, 0) = varpos; *measurementNoiseCov_.ptr(1, 1) = varpos; *measurementNoiseCov_.ptr(2, 2) = 1e-2f; *measurementNoiseCov_.ptr(3, 3) = varpos; mean = measurementMatrix * statePost; cv::Mat temp = measurementMatrix * errorCovPost; gemm(temp, measurementMatrix, 1, measurementNoiseCov_, 1, covariance, cv::GEMM_2_T); } int Trajectory::count = 0; const cv::Mat &Trajectory::predict(void) { if (state != Tracked) *cv::KalmanFilter::statePost.ptr(7) = 0; return TKalmanFilter::predict(); } void Trajectory::update(Trajectory &traj, int timestamp_, bool update_embedding_) { timestamp = timestamp_; ++length; ltrb = traj.ltrb; xyah = traj.xyah; TKalmanFilter::correct(cv::Mat(traj.xyah)); state = Tracked; is_activated = true; score = traj.score; if (update_embedding_) update_embedding(traj.current_embedding); } void Trajectory::activate(int timestamp_) { id = next_id(); TKalmanFilter::init(cv::Mat(xyah)); length = 0; state = Tracked; if (timestamp_ == 1) { is_activated = true; } timestamp = timestamp_; starttime = timestamp_; } void Trajectory::reactivate(Trajectory &traj, int timestamp_, bool newid) { TKalmanFilter::correct(cv::Mat(traj.xyah)); update_embedding(traj.current_embedding); length = 0; state = Tracked; is_activated = true; timestamp = timestamp_; if (newid) id = next_id(); } void Trajectory::update_embedding(const cv::Mat &embedding) { current_embedding = embedding / cv::norm(embedding); if (smooth_embedding.empty()) { smooth_embedding = current_embedding; } else { smooth_embedding = eta * smooth_embedding + (1 - eta) * current_embedding; } smooth_embedding = smooth_embedding / cv::norm(smooth_embedding); } TrajectoryPool operator+(const TrajectoryPool &a, const TrajectoryPool &b) { TrajectoryPool sum; sum.insert(sum.end(), a.begin(), a.end()); std::vector ids(a.size()); for (size_t i = 0; i < a.size(); ++i) ids[i] = a[i].id; for (size_t i = 0; i < b.size(); ++i) { std::vector::iterator iter = find(ids.begin(), ids.end(), b[i].id); if (iter == ids.end()) { sum.push_back(b[i]); ids.push_back(b[i].id); } } return sum; } TrajectoryPool operator+(const TrajectoryPool &a, const TrajectoryPtrPool &b) { TrajectoryPool sum; sum.insert(sum.end(), a.begin(), a.end()); std::vector ids(a.size()); for (size_t i = 0; i < a.size(); ++i) ids[i] = a[i].id; for (size_t i = 0; i < b.size(); ++i) { std::vector::iterator iter = find(ids.begin(), ids.end(), b[i]->id); if (iter == ids.end()) { sum.push_back(*b[i]); ids.push_back(b[i]->id); } } return sum; } TrajectoryPool &operator+=(TrajectoryPool &a, const TrajectoryPtrPool &b) { std::vector ids(a.size()); for (size_t i = 0; i < a.size(); ++i) ids[i] = a[i].id; for (size_t i = 0; i < b.size(); ++i) { if (b[i]->smooth_embedding.empty()) continue; std::vector::iterator iter = find(ids.begin(), ids.end(), b[i]->id); if (iter == ids.end()) { a.push_back(*b[i]); ids.push_back(b[i]->id); } } return a; } TrajectoryPool operator-(const TrajectoryPool &a, const TrajectoryPool &b) { TrajectoryPool dif; std::vector ids(b.size()); for (size_t i = 0; i < b.size(); ++i) ids[i] = b[i].id; for (size_t i = 0; i < a.size(); ++i) { std::vector::iterator iter = find(ids.begin(), ids.end(), a[i].id); if (iter == ids.end()) dif.push_back(a[i]); } return dif; } TrajectoryPool &operator-=(TrajectoryPool &a, const TrajectoryPool &b) { std::vector ids(b.size()); for (size_t i = 0; i < b.size(); ++i) ids[i] = b[i].id; TrajectoryPoolIterator piter; for (piter = a.begin(); piter != a.end(); ) { std::vector::iterator iter = find(ids.begin(), ids.end(), piter->id); if (iter == ids.end()) ++piter; else piter = a.erase(piter); } return a; } TrajectoryPtrPool operator+(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b) { TrajectoryPtrPool sum; sum.insert(sum.end(), a.begin(), a.end()); std::vector ids(a.size()); for (size_t i = 0; i < a.size(); ++i) ids[i] = a[i]->id; for (size_t i = 0; i < b.size(); ++i) { std::vector::iterator iter = find(ids.begin(), ids.end(), b[i]->id); if (iter == ids.end()) { sum.push_back(b[i]); ids.push_back(b[i]->id); } } return sum; } TrajectoryPtrPool operator+(const TrajectoryPtrPool &a, TrajectoryPool &b) { TrajectoryPtrPool sum; sum.insert(sum.end(), a.begin(), a.end()); std::vector ids(a.size()); for (size_t i = 0; i < a.size(); ++i) ids[i] = a[i]->id; for (size_t i = 0; i < b.size(); ++i) { std::vector::iterator iter = find(ids.begin(), ids.end(), b[i].id); if (iter == ids.end()) { sum.push_back(&b[i]); ids.push_back(b[i].id); } } return sum; } TrajectoryPtrPool operator-(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b) { TrajectoryPtrPool dif; std::vector ids(b.size()); for (size_t i = 0; i < b.size(); ++i) ids[i] = b[i]->id; for (size_t i = 0; i < a.size(); ++i) { std::vector::iterator iter = find(ids.begin(), ids.end(), a[i]->id); if (iter == ids.end()) dif.push_back(a[i]); } return dif; } cv::Mat embedding_distance(const TrajectoryPool &a, const TrajectoryPool &b) { cv::Mat dists(a.size(), b.size(), CV_32F); for (size_t i = 0; i < a.size(); ++i) { float *distsi = dists.ptr(i); for (size_t j = 0; j < b.size(); ++j) { cv::Mat u = a[i].smooth_embedding; cv::Mat v = b[j].smooth_embedding; double uv = u.dot(v); double uu = u.dot(u); double vv = v.dot(v); double dist = std::abs(1. - uv / std::sqrt(uu * vv)); //double dist = cv::norm(a[i].smooth_embedding, b[j].smooth_embedding, cv::NORM_L2); distsi[j] = static_cast(std::max(std::min(dist, 2.), 0.)); } } return dists; } cv::Mat embedding_distance(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b) { cv::Mat dists(a.size(), b.size(), CV_32F); for (size_t i = 0; i < a.size(); ++i) { float *distsi = dists.ptr(i); for (size_t j = 0; j < b.size(); ++j) { //double dist = cv::norm(a[i]->smooth_embedding, b[j]->smooth_embedding, cv::NORM_L2); //distsi[j] = static_cast(dist); cv::Mat u = a[i]->smooth_embedding; cv::Mat v = b[j]->smooth_embedding; double uv = u.dot(v); double uu = u.dot(u); double vv = v.dot(v); double dist = std::abs(1. - uv / std::sqrt(uu * vv)); distsi[j] = static_cast(std::max(std::min(dist, 2.), 0.)); } } return dists; } cv::Mat embedding_distance(const TrajectoryPtrPool &a, const TrajectoryPool &b) { cv::Mat dists(a.size(), b.size(), CV_32F); for (size_t i = 0; i < a.size(); ++i) { float *distsi = dists.ptr(i); for (size_t j = 0; j < b.size(); ++j) { //double dist = cv::norm(a[i]->smooth_embedding, b[j].smooth_embedding, cv::NORM_L2); //distsi[j] = static_cast(dist); cv::Mat u = a[i]->smooth_embedding; cv::Mat v = b[j].smooth_embedding; double uv = u.dot(v); double uu = u.dot(u); double vv = v.dot(v); double dist = std::abs(1. - uv / std::sqrt(uu * vv)); distsi[j] = static_cast(std::max(std::min(dist, 2.), 0.)); } } return dists; } cv::Mat mahalanobis_distance(const TrajectoryPool &a, const TrajectoryPool &b) { std::vector means(a.size()); std::vector icovariances(a.size()); for (size_t i = 0; i < a.size(); ++i) { cv::Mat covariance; a[i].project(means[i], covariance); cv::invert(covariance, icovariances[i]); } cv::Mat dists(a.size(), b.size(), CV_32F); for (size_t i = 0; i < a.size(); ++i) { float *distsi = dists.ptr(i); for (size_t j = 0; j < b.size(); ++j) { const cv::Mat x(b[j].xyah); float dist = static_cast(cv::Mahalanobis(x, means[i], icovariances[i])); distsi[j] = dist * dist; } } return dists; } cv::Mat mahalanobis_distance(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b) { std::vector means(a.size()); std::vector icovariances(a.size()); for (size_t i = 0; i < a.size(); ++i) { cv::Mat covariance; a[i]->project(means[i], covariance); cv::invert(covariance, icovariances[i]); } cv::Mat dists(a.size(), b.size(), CV_32F); for (size_t i = 0; i < a.size(); ++i) { float *distsi = dists.ptr(i); for (size_t j = 0; j < b.size(); ++j) { const cv::Mat x(b[j]->xyah); float dist = static_cast(cv::Mahalanobis(x, means[i], icovariances[i])); distsi[j] = dist * dist; } } return dists; } cv::Mat mahalanobis_distance(const TrajectoryPtrPool &a, const TrajectoryPool &b) { std::vector means(a.size()); std::vector icovariances(a.size()); for (size_t i = 0; i < a.size(); ++i) { cv::Mat covariance; a[i]->project(means[i], covariance); cv::invert(covariance, icovariances[i]); } cv::Mat dists(a.size(), b.size(), CV_32F); for (size_t i = 0; i < a.size(); ++i) { float *distsi = dists.ptr(i); for (size_t j = 0; j < b.size(); ++j) { const cv::Mat x(b[j].xyah); float dist = static_cast(cv::Mahalanobis(x, means[i], icovariances[i])); distsi[j] = dist * dist; } } return dists; } static inline float calc_inter_area(const cv::Vec4f &a, const cv::Vec4f &b) { if (a[2] < b[0] || a[0] > b[2] || a[3] < b[1] || a[1] > b[3]) return 0.f; float w = std::min(a[2], b[2]) - std::max(a[0], b[0]); float h = std::min(a[3], b[3]) - std::max(a[1], b[1]); return w * h; } cv::Mat iou_distance(const TrajectoryPool &a, const TrajectoryPool &b) { std::vector areaa(a.size()); for (size_t i = 0; i < a.size(); ++i) { float w = a[i].ltrb[2] - a[i].ltrb[0]; float h = a[i].ltrb[3] - a[i].ltrb[1]; areaa[i] = w * h; } std::vector areab(b.size()); for (size_t j = 0; j < b.size(); ++j) { float w = b[j].ltrb[2] - b[j].ltrb[0]; float h = b[j].ltrb[3] - b[j].ltrb[1]; areab[j] = w * h; } cv::Mat dists(a.size(), b.size(), CV_32F); for (size_t i = 0; i < a.size(); ++i) { const cv::Vec4f &boxa = a[i].ltrb; float *distsi = dists.ptr(i); for (size_t j = 0; j < b.size(); ++j) { const cv::Vec4f &boxb = b[j].ltrb; float inters = calc_inter_area(boxa, boxb); distsi[j] = 1.f - inters / (areaa[i] + areab[j] - inters); } } return dists; } cv::Mat iou_distance(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b) { std::vector areaa(a.size()); for (size_t i = 0; i < a.size(); ++i) { float w = a[i]->ltrb[2] - a[i]->ltrb[0]; float h = a[i]->ltrb[3] - a[i]->ltrb[1]; areaa[i] = w * h; } std::vector areab(b.size()); for (size_t j = 0; j < b.size(); ++j) { float w = b[j]->ltrb[2] - b[j]->ltrb[0]; float h = b[j]->ltrb[3] - b[j]->ltrb[1]; areab[j] = w * h; } cv::Mat dists(a.size(), b.size(), CV_32F); for (size_t i = 0; i < a.size(); ++i) { const cv::Vec4f &boxa = a[i]->ltrb; float *distsi = dists.ptr(i); for (size_t j = 0; j < b.size(); ++j) { const cv::Vec4f &boxb = b[j]->ltrb; float inters = calc_inter_area(boxa, boxb); distsi[j] = 1.f - inters / (areaa[i] + areab[j] - inters); } } return dists; } cv::Mat iou_distance(const TrajectoryPtrPool &a, const TrajectoryPool &b) { std::vector areaa(a.size()); for (size_t i = 0; i < a.size(); ++i) { float w = a[i]->ltrb[2] - a[i]->ltrb[0]; float h = a[i]->ltrb[3] - a[i]->ltrb[1]; areaa[i] = w * h; } std::vector areab(b.size()); for (size_t j = 0; j < b.size(); ++j) { float w = b[j].ltrb[2] - b[j].ltrb[0]; float h = b[j].ltrb[3] - b[j].ltrb[1]; areab[j] = w * h; } cv::Mat dists(a.size(), b.size(), CV_32F); for (size_t i = 0; i < a.size(); ++i) { const cv::Vec4f &boxa = a[i]->ltrb; float *distsi = dists.ptr(i); for (size_t j = 0; j < b.size(); ++j) { const cv::Vec4f &boxb = b[j].ltrb; float inters = calc_inter_area(boxa, boxb); distsi[j] = 1.f - inters / (areaa[i] + areab[j] - inters); } } return dists; } } // namespace PaddleDetection