# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.nn as nn import paddle.optimizer as optimizer import paddle.regularizer as regularizer from ppdet.core.workspace import register, serializable __all__ = ['LearningRate', 'OptimizerBuilder'] from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) @serializable class CosineDecay(object): """ Cosine learning rate decay Args: max_epochs (int): max epochs for the training process. if you commbine cosine decay with warmup, it is recommended that the max_iters is much larger than the warmup iter """ def __init__(self, max_epochs=1000, use_warmup=True): self.max_epochs = max_epochs self.use_warmup = use_warmup def __call__(self, base_lr=None, boundary=None, value=None, step_per_epoch=None): assert base_lr is not None, "either base LR or values should be provided" max_iters = self.max_epochs * int(step_per_epoch) if boundary is not None and value is not None and self.use_warmup: for i in range(int(boundary[-1]), max_iters): boundary.append(i) decayed_lr = base_lr * 0.5 * ( math.cos(i * math.pi / max_iters) + 1) value.append(decayed_lr) return optimizer.lr.PiecewiseDecay(boundary, value) return optimizer.lr.CosineAnnealingDecay(base_lr, T_max=max_iters) @serializable class PiecewiseDecay(object): """ Multi step learning rate decay Args: gamma (float | list): decay factor milestones (list): steps at which to decay learning rate """ def __init__(self, gamma=[0.1, 0.01], milestones=[8, 11], values=None, use_warmup=True): super(PiecewiseDecay, self).__init__() if type(gamma) is not list: self.gamma = [] for i in range(len(milestones)): self.gamma.append(gamma / 10**i) else: self.gamma = gamma self.milestones = milestones self.values = values self.use_warmup = use_warmup def __call__(self, base_lr=None, boundary=None, value=None, step_per_epoch=None): if boundary is not None and self.use_warmup: boundary.extend([int(step_per_epoch) * i for i in self.milestones]) else: # do not use LinearWarmup boundary = [int(step_per_epoch) * i for i in self.milestones] value = [base_lr] # during step[0, boundary[0]] is base_lr # self.values is setted directly in config if self.values is not None: assert len(self.milestones) + 1 == len(self.values) return optimizer.lr.PiecewiseDecay(boundary, self.values) # value is computed by self.gamma value = value if value is not None else [base_lr] for i in self.gamma: value.append(base_lr * i) return optimizer.lr.PiecewiseDecay(boundary, value) @serializable class LinearWarmup(object): """ Warm up learning rate linearly Args: steps (int): warm up steps start_factor (float): initial learning rate factor """ def __init__(self, steps=500, start_factor=1. / 3): super(LinearWarmup, self).__init__() self.steps = steps self.start_factor = start_factor def __call__(self, base_lr, step_per_epoch): boundary = [] value = [] for i in range(self.steps + 1): if self.steps > 0: alpha = i / self.steps factor = self.start_factor * (1 - alpha) + alpha lr = base_lr * factor value.append(lr) if i > 0: boundary.append(i) return boundary, value @serializable class BurninWarmup(object): """ Warm up learning rate in burnin mode Args: steps (int): warm up steps """ def __init__(self, steps=1000): super(BurninWarmup, self).__init__() self.steps = steps def __call__(self, base_lr, step_per_epoch): boundary = [] value = [] burnin = min(self.steps, step_per_epoch) for i in range(burnin + 1): factor = (i * 1.0 / burnin)**4 lr = base_lr * factor value.append(lr) if i > 0: boundary.append(i) return boundary, value @register class LearningRate(object): """ Learning Rate configuration Args: base_lr (float): base learning rate schedulers (list): learning rate schedulers """ __category__ = 'optim' def __init__(self, base_lr=0.01, schedulers=[PiecewiseDecay(), LinearWarmup()]): super(LearningRate, self).__init__() self.base_lr = base_lr self.schedulers = schedulers def __call__(self, step_per_epoch): assert len(self.schedulers) >= 1 if not self.schedulers[0].use_warmup: return self.schedulers[0](base_lr=self.base_lr, step_per_epoch=step_per_epoch) # TODO: split warmup & decay # warmup boundary, value = self.schedulers[1](self.base_lr, step_per_epoch) # decay decay_lr = self.schedulers[0](self.base_lr, boundary, value, step_per_epoch) return decay_lr @register class OptimizerBuilder(): """ Build optimizer handles Args: regularizer (object): an `Regularizer` instance optimizer (object): an `Optimizer` instance """ __category__ = 'optim' def __init__(self, clip_grad_by_norm=None, regularizer={'type': 'L2', 'factor': .0001}, optimizer={'type': 'Momentum', 'momentum': .9}): self.clip_grad_by_norm = clip_grad_by_norm self.regularizer = regularizer self.optimizer = optimizer def __call__(self, learning_rate, model=None): if self.clip_grad_by_norm is not None: grad_clip = nn.ClipGradByGlobalNorm( clip_norm=self.clip_grad_by_norm) else: grad_clip = None if self.regularizer and self.regularizer != 'None': reg_type = self.regularizer['type'] + 'Decay' reg_factor = self.regularizer['factor'] regularization = getattr(regularizer, reg_type)(reg_factor) else: regularization = None optim_args = self.optimizer.copy() optim_type = optim_args['type'] del optim_args['type'] if optim_type != 'AdamW': optim_args['weight_decay'] = regularization op = getattr(optimizer, optim_type) if 'without_weight_decay_params' in optim_args: keys = optim_args['without_weight_decay_params'] params = [{ 'params': [ p for n, p in model.named_parameters() if any([k in n for k in keys]) ], 'weight_decay': 0. }, { 'params': [ p for n, p in model.named_parameters() if all([k not in n for k in keys]) ] }] del optim_args['without_weight_decay_params'] else: params = model.parameters() return op(learning_rate=learning_rate, parameters=params, grad_clip=grad_clip, **optim_args) class ModelEMA(object): """ Exponential Weighted Average for Deep Neutal Networks Args: model (nn.Layer): Detector of model. decay (int): The decay used for updating ema parameter. Ema's parameter are updated with the formula: `ema_param = decay * ema_param + (1 - decay) * cur_param`. Defaults is 0.9998. use_thres_step (bool): Whether set decay by thres_step or not cycle_epoch (int): The epoch of interval to reset ema_param and step. Defaults is -1, which means not reset. Its function is to add a regular effect to ema, which is set according to experience and is effective when the total training epoch is large. """ def __init__(self, model, decay=0.9998, use_thres_step=False, cycle_epoch=-1): self.step = 0 self.epoch = 0 self.decay = decay self.state_dict = dict() for k, v in model.state_dict().items(): self.state_dict[k] = paddle.zeros_like(v) self.use_thres_step = use_thres_step self.cycle_epoch = cycle_epoch def reset(self): self.step = 0 self.epoch = 0 for k, v in self.state_dict.items(): self.state_dict[k] = paddle.zeros_like(v) def update(self, model): if self.use_thres_step: decay = min(self.decay, (1 + self.step) / (10 + self.step)) else: decay = self.decay self._decay = decay model_dict = model.state_dict() for k, v in self.state_dict.items(): v = decay * v + (1 - decay) * model_dict[k] v.stop_gradient = True self.state_dict[k] = v self.step += 1 def apply(self): if self.step == 0: return self.state_dict state_dict = dict() for k, v in self.state_dict.items(): v = v / (1 - self._decay**self.step) v.stop_gradient = True state_dict[k] = v self.epoch += 1 if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch: self.reset() return state_dict