# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from collections import OrderedDict from paddleslim.dist.single_distiller import merge, l2_loss from paddle import fluid from ppdet.core.workspace import load_config, merge_config, create from ppdet.data.reader import create_reader from ppdet.utils.eval_utils import parse_fetches, eval_results, eval_run from ppdet.utils.stats import TrainingStats from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu import ppdet.utils.checkpoint as checkpoint import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def main(): env = os.environ cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) if 'log_iter' not in cfg: cfg.log_iter = 20 # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # build program model = create(main_arch) inputs_def = cfg['TrainReader']['inputs_def'] train_feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(train_feed_vars) loss = train_fetches['loss'] # get all student variables student_vars = [] for v in fluid.default_main_program().list_vars(): try: student_vars.append((v.name, v.shape)) except: pass # uncomment the following lines to print all student variables # print("="*50 + "student_model_vars" + "="*50) # print(student_vars) eval_prog = fluid.Program() with fluid.program_guard(eval_prog, fluid.default_startup_program()): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] test_feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(test_feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(cfg.EvalReader) eval_loader.set_sample_list_generator(eval_reader, place) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) teacher_cfg = load_config(FLAGS.teacher_config) teacher_arch = teacher_cfg.architecture teacher_program = fluid.Program() teacher_startup_program = fluid.Program() with fluid.program_guard(teacher_program, teacher_startup_program): with fluid.unique_name.guard(): teacher_feed_vars = OrderedDict() for name, var in train_feed_vars.items(): teacher_feed_vars[name] = teacher_program.global_block( )._clone_variable( var, force_persistable=False) model = create(teacher_arch) train_fetches = model.train(teacher_feed_vars) teacher_loss = train_fetches['loss'] # get all teacher variables teacher_vars = [] for v in teacher_program.list_vars(): try: teacher_vars.append((v.name, v.shape)) except: pass # uncomment the following lines to print all teacher variables # print("="*50 + "teacher_model_vars" + "="*50) # print(teacher_vars) exe.run(teacher_startup_program) assert FLAGS.teacher_pretrained, "teacher_pretrained should be set" checkpoint.load_params(exe, teacher_program, FLAGS.teacher_pretrained) teacher_program = teacher_program.clone(for_test=True) cfg = load_config(FLAGS.config) data_name_map = { 'image': 'image', 'gt_bbox': 'gt_bbox', 'gt_class': 'gt_class', 'gt_score': 'gt_score' } distill_prog = merge(teacher_program, fluid.default_main_program(), data_name_map, place) distill_weight = 100 distill_pairs = [['teacher_conv2d_6.tmp_1', 'conv2d_20.tmp_1'], ['teacher_conv2d_14.tmp_1', 'conv2d_28.tmp_1'], ['teacher_conv2d_22.tmp_1', 'conv2d_36.tmp_1']] def l2_distill(pairs, weight): """ Add l2 distillation losses composed of multi pairs of feature maps, each pair of feature maps is the input of teacher and student's yolov3_loss respectively """ loss = [] for pair in pairs: loss.append(l2_loss(pair[0], pair[1])) loss = fluid.layers.sum(loss) weighted_loss = loss * weight return weighted_loss distill_loss = l2_distill(distill_pairs, distill_weight) loss = distill_loss + loss lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') lr = lr_builder() opt = optim_builder(lr) opt.minimize(loss) exe.run(fluid.default_startup_program()) checkpoint.load_params(exe, fluid.default_main_program(), cfg.pretrain_weights) build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_reduce_ops = False build_strategy.fuse_all_optimizer_ops = False build_strategy.fuse_elewise_add_act_ops = True # only enable sync_bn in multi GPU devices sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 parallel_main = fluid.CompiledProgram(distill_prog).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' ignore_params = cfg.finetune_exclude_pretrained_params \ if 'finetune_exclude_pretrained_params' in cfg else [] start_iter = 0 if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, distill_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() elif cfg.pretrain_weights and fuse_bn and not ignore_params: checkpoint.load_and_fusebn(exe, distill_prog, cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_params( exe, distill_prog, cfg.pretrain_weights, ignore_params=ignore_params) train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num, cfg) train_loader.set_sample_list_generator(train_reader, place) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() map_type = cfg.map_type if 'map_type' in cfg else '11point' best_box_ap_list = [0.0, 0] #[map, iter] cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) train_loader.start() for step_id in range(start_iter, cfg.max_iters): teacher_loss_np, distill_loss_np, loss_np, lr_np = exe.run( parallel_main, fetch_list=[ 'teacher_' + teacher_loss.name, distill_loss.name, loss.name, lr.name ]) if step_id % cfg.log_iter == 0: logger.info( "step {} lr {:.6f}, loss {:.6f}, distill_loss {:.6f}, teacher_loss {:.6f}". format(step_id, lr_np[0], loss_np[0], distill_loss_np[0], teacher_loss_np[0])) if step_id % cfg.snapshot_iter == 0 and step_id != 0 or step_id == cfg.max_iters - 1: save_name = str( step_id) if step_id != cfg.max_iters - 1 else "model_final" checkpoint.save(exe, distill_prog, os.path.join(save_dir, save_name)) # eval results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls) resolution = None box_ap_stats = eval_results(results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, cfg['EvalReader']['dataset']) if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = step_id checkpoint.save(exe, distill_prog, os.path.join("./", "best_model")) logger.info("Best test box ap: {}, in step: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_loader.reset() if __name__ == '__main__': parser = ArgsParser() parser.add_argument( "-r", "--resume_checkpoint", default=None, type=str, help="Checkpoint path for resuming training.") parser.add_argument( "-t", "--teacher_config", default=None, type=str, help="Config file of teacher architecture.") parser.add_argument( "--teacher_pretrained", default=None, type=str, help="Whether to use pretrained model.") parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") FLAGS = parser.parse_args() main()